
匸亚 JOURNAL OF THE ACQUSHCAL SOCIETY OF KOREA VOL.25, NQ4E 2006. 12 pp. 137T41

Optimization of HE-AAC for Korean S-DMB Using 
TMS320C55x DSP Core

Hyung-Jung Kim*, Deock-Gu Jee*

*Electronics and Telecommunications Research Institute

(Received October 10； Revised December 4 2006； accepted December 18 2006)

Abstract

This paper presents HE-AAC decoder optimization on TMS320C55x fixed-point DSP core using a DSP-C like FFR 
code, which provides fast and flexible porting to a DSP core. Our optimization efforts are focused on methodologies 
that include general optimization methods of FFR code suitable for general DSP or RISC platform in high-level 
language and software optimization methods in assembly language level. The implementation result requires 48 MIPS 
and 135 Kbytes memory space to decode 48 Kbps stereo using real Korean S-DMB data.

Keywords^ DSP optimization, Real-time implementatiom Korean S-DMB, MPEG-AAC

I. Introduction

In this paper, we optimize and implement MPEG-4 

High-Efficiency Advanced Audio Coding (HE-AAC) 

decoder on a fixed-point DSP. HE-AAC algorithm is a 

MPEG standard extending MPEG-4 AAC algorithm by 

adding spectral band replication (SBR) algorithm [1, 2]. 

Using low-pass signal and a small amount of control data 

for SBR, HE-AAC decoder generates full-band signal and 

improves coding efficiency by more than 30%.

A fixed-point reference code is essential in development 

of embedded portable systems using fixed-point 

processor. Because the usual reference code such as MPEG 

standard audio is based on floating-point arithmetic, the 

fixed-point simulation must be carried out accounting to 

performance and complexity of application algorithms. In 

generally the fixed point simulation requires much effort 

and time. Therefore, we refer to a DSP-C like Fixed- 

point Firmware Reference (FFR) code. FFR code provides 

fast and flexible porting to a DSP or MCU platforms and a 

bit exact model of the coding scheme according to the

Corresponding author： Hyung-Jung Kim (acekim@etri.re.kr)
ETRI, 161 Gajeong-Dong Yuseong-Gu. Daejeon 305-350, Korea. 

arithmetic behavior of the target processor [3].

The assembly level optimization in the fixed-point DSP 

is still very important in development of embedded 

systems. It is because of low efficiency of C—compiler, 

occurrence of more and more complex application algorithms 

and the necessity of the integrated implementation of 

many application algorithms on a single platform.

In this paper, we describe general FFR code optimization 

methodologies, which include general optimization methods 

for target processor. And we focused on TMS320C55x 

DSP core specific optimizations. The organization of this 

paper is as follows. The FFR code optimization techniques 

are presented in section n. And then DSP implementation 

issues and results are described in sections III and IV, 

respectively. Finally, we remark conclusions in section V.

II. FFR code optimization techniques

FFR code is close to DSP-C, the upcoming ANSI- 

Extensions to ANSI-C. FFR code shows best performance 

among fixed-point C-codes for HE-AAC algorithm. 

Instead of superior audio quality, FFR code requires more 

computational complexity.

Optimization of HE-AAC for Korean S-DMB Using TMS320C55x DSP Core 137

mailto:acekim@etri.re.kr


The major characteristic of FFR code is the introduction 

of a fractional data type representing the typical 

fixed-point data format and the corresponding operator. 

The fractional data types sfract, fract and dfract. For a 

typical 16-bit DSP sfract is 16—bit wide, fract is 32-bit 

wide and afract is 40-bit wide. With the use of the 

technique of operand overloading and the fractional data 

type, FFR code for HE-AAC decoder could provide fast 

and flexible portability to a various DSP or MCU platforms 

[4], The main features of FFR code are as follows：

V The fixed-point reference code stays as close as 

possible to the floating-point reference code.

V No need for specific functions for different operands 

거nd different return values in the code.

V Coefficient tables stay in floating point notation. At 

runtime, the values are casted to the corresponding 

fixed point representation.

FFR code itself has many advantages, but optimization 

in FFR code level is necessary to fully utilize the 

performance of target processor and to generate suitable 

fixed-point code for target processor. One major task of 

optimization in FFR code level is the replacement of 

overloaded operators by intrinsic.

The porting of the FFR code to the target platform 

means replacing all fractional operators defined by the 

sfract, fract and dfract classes by the corresponding 

intrinsic. Figure 1 show our proposed porting methodology 

that is consisting of 5 design phases and test phase.

First phase is the preparation stage in which the main

I System functions and | 
! constraint conditions analysis]

The hardware features

I Decision of data type width

I"Building of intrinsics libraiyH

Step by step replacement ] 

Compliance test

j Fixed point reference code

Figure 1. Our FFR Poritng Methodology.

task is to analyze all kinds of constraint in the embedded 

systems, for example, memory sizes, power consumption 

and the ability of the target processor. The landmark of 

porting task and the confined conditions shall be cleared in 

this phase. The second phase is to analyze the features of 

specific processor, especially on the micro-architecture 

and the pipeline architecture of target processor that shall 

guide the embedded software optimization wcwk. The third 

phase is to decide data type width such as sfract, fract 

and dfract.

The forth phase is to build intrinsic functions 

corresponding fractional operators i.e. FFR arithmetic 

library. Since a standard C/C++ compiler does not know 

about the TMS320C55x intrinsic, a C implementation of 

these functions is required. We have built our intrinsic 

library for TMS320C55x core. To speed up software 

development, it is desirable that the same code can be 

compiled either for the DSP target or directly for the host.

The fifth phase is to replace all fractional operators by 

the corresponding intrinsic functions, Then, we must 

verify that the output fixed point reference code for 

HE-AAC decoder ensure full compliance with ISO 

14496—4 audio standard. Finally we can get fixed-point 

reference code of HE-AAC decoder for TMS320C55x 

DSP core.

Considering the architecture of TMS320C55x DSPcore 

and output audio quality of HE-AAC decoder, 16-bit, 

32 — bit and 40-bit data width were selected for sfract, 

fract and dfract data type respectively and dfract was 

allocated in only 40-bit accumulators. In next step, in 

order to reduce computational load, implemented intrinsic 

functions are bit-exact with TMS320C55x intrinsic but 

not with FFR arithmetic library.

III. DSP implementation

The overall HE-AAC decoding algorithm can be 

partitioned into two categories, which are control- 

intensive part and computation-intensive part. Control- 

intensive part is not as time critical as computation

intensive part. Thus, we can perform distinct optimization 

for each part of the algorithm.

TMSC55x DSP core is suitable for mobile terminal 

138 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL.25, NO.4E



platform and supports a variety of parallel instructions by 

the use of the process's multiple-bus architecture, dual 

MAC units, separated program unit, address unit, and data 

computation unit. The key feature of it is dual MAC units 

that are capable of parallel MAC computations per one 

cycle. Thus, the C55x DSP can provide more powerful 

MAC operations than other DSP and have large internal 

memory space. But, C—compiler can not efficiently utilize 

these characteristics. Therefore, hand assembly coding is 

required.

3.1. C-compiler based Implementation
The assembly code produced from C-compiler has much 

redundancy due to the inefficiency of it. So, in order to 

get more efficient assembly code, further optimization is 

required in assembly level. But hand assembly coding is 

time-consuming work, and therefore development cost is 

increased. As a result, we must tradeoff between 

performance and cost.

Before the main optimization, in order to decide whether 

hand assembly coding is needed for overall part of 

HE—AAC algorithm or especially complex parts, analysis 

of computational complexity is needed. Thus, we 

substituted arithmetic functions with C compiler intrinsics 

which can be executed with no function call overhead in 

one cycle, and compiled C code. And then, we analyzed 

the computational complexities of cross-compiled decoder 

and C-compiler efficiencies of each functional block.

Table 1 gives the result of our C-compiler based 

implementation with C55x-intrinscs before optimization. 

As shown in Table I, the control-intensive part is not as 

complex as computation-intensive part. But, this part has 

relatively high computational loads. Therefore, hand

Table 1. Performance of our C-compiler based implementation with 
C55x-intrinsics before optimization.

Functional Block Complexity(MHz) %

AAC

Huffman decoding 7 2.04
Stereo processing 6 1 75
IMDCT 77 22 45
Other 19 5.54

SBR

Analysis filter bank 34 9.91
너F generation 26 7.58
Envelope Adjuster 51 14.87
Synthesis filter bank 109 31.78
Other 14 4.08

Total 343 100

assembly coding must be performed for all part of 

HE-AAC algorithm.

3.2. Assembly-language level optimization
In computation-intensive part such as IMDCT, analysis 

filter bank, HF generation, Envelope Adjuster, and 

synthesis filter bank, most of operations are memory 

access, addition, and multiplication. In case of multiplication, 

16-bit x 16-bit, 32-bit x 16-bit, and 32-bit x 32-bit 

multiplication is needed to obtain good audio output quality 

in HE-AAC decoder [5], Considering that MAC is the 

major burden of computation-intensive part, we have 

concentrated on C55x specific optimization to reduce the 

computational loads of MAC operation.

C55x DSP core support multiple memory access 

operation, which makes it possible to three 16-bit data 

road from memory in one cycle. And dual MAC units can

Fig니re 2. An example of optimization in assembly level.

/* Original C-Code
for (i = 1; i < M; i++) (

tmp[2*i] = add(mpy_32_16(Dat[L-i],sirLtb[L-i]), 
mpy_32_16(Dat[i],sin_tb[i]))> > 1;

tmp[2*i+1] = snb]mpy_32_16(Dat[L・ij,sin_tb[L・iD,

7

}
mpy_32_16(Dat[i],sin_tb[i]))>>1;

;; Hand Assembly Code
rptb Loop 
mpy uns(*arO-), *cdp, acO
：：mpy uns(*ar1-), *cdp, ac1

mac *arO+, *(cdp+T0), ac0>>#16
::mac *ar1+, *(cdp+T0), ac1) >#16 

llneg TO

mpy uns(*ar0-), *cdp, ac2
::mpy uns(*ar1 *cdp, ac3

lladd #1, TO

mac *arO+, *(cdp+T0), ac2>>#16
::mac *ar1+, *(cdp+T0), ac3>)#16 
llneg TO

add ac1, ac2
sub #1, TO
llsfts ac2, #-1

mov ac2, dbl(*ar2+)
llsub acO, ac3

sfts ac3, #너
mov ac3, dbl(*ar2+)
lladd #2, arO

Loop： sub #2, ar1

»!

Optimization of HE-AAC for Korean S-DMB Using TMS320C55x DSP Core 139



perform two multiplications in one cycle. But, in general, 

two multiplications need four operands. And so, one 

operand must be commonly used in two multiplication 

operations for parallel MAC operations. Therefore, in 

order to use parallel MAC operations, we have used 

sophisticated data memory addressing and instruction 

scheduling.

Figure 2 has given an elaborate example about how to 

using parallel MAC operations to optimize assembly code. 

The codes in figure 2 are typical codes after optimization 

manually and they need only 10 cycles.

IV. Implementation Res니ts

DSP platform for the HE-AAC implementation are 

Spectrum Digital's C5509 EVM and TI OMAP1610 EVM. 

All HE-AAC algorithms arerunning on TMS320C55x DSP 

core and MPEG-2 demux module is running on ARM9 

core of OMAP1610. The MPEG-2 demux module extract 

audio packet data form real Korean S-DMB data and 

transfer it to HE-AAC algorithm. In order to objectively 

measure the sound quality of developed HE-AAC decoder, 

ISO 14496-4 compliance test was performed [6]. 

HE-AAC decoder don t exceed the criteria of compliance 

test, and therefore satisfy ISO 14496-4 compliance.

Table 2 shows the performance of the implemented 

decoder. The maximum numbers of operations for the 48 

kbps stereo bitstream is 47.7 million cycles per second 

(MCPS). It can be seen from Table 2 that this decoder 

uses about 25% of 200-MHz DSP. AAC part uses less 

complexity and SBR part use more complexity. The size

Table 2. Implementation result of HE-AAC.

Functional Block Complexity(MHz) %
Huffman decoding 2.78 5.83
Stereo processing 1.72 360

AAC IMDCT 8.89 18.63
Other 3.61 7.56
Sub Total 17.00 35.62
Analysis filter bank 5.65 11.84
HF generation 3.76 7.88

〜기〉 Envelope Adjuster 631 13 23
Synthesis filter bank 147 30.81
Other 0.3 0,63
Sub Total 30.72 64.38

Total 4772 100

Table 3. The best optimization performance for typcial devices for 
stereo, 44.1 Khz.

Type Vendor Type Data 
[bit]

Performance 
[Mclcyles]

C64 TI DSP 16 24
MMDSP+ ST DSP 24 24
ARM9E ARM MCU 32 44
ARM9 ARM MCU 32 61

of program memory and data memory are 25.5 Kwords 

and 41 Kwords, respectively.

Table 3 presents real world optimal figures for typical 

devices.Typical devices means including caches of typical 

size, typical hardware accelerator, typical optimal function 

etc. And FFR code is based on the fractional data type, so 

it is more suitable 24-bit and 32-bit processor than 

16-bit processor. TI C55x core is suitable to mobile 

terminal but has disadvantages than mentioned typical 

devices because of its structural limitation like only 

16-bit processor and absence of hardware accelerator.

V. Conclusions

In this paper, we have proposed optimization techniques 

for real-time implementation of HE-AAC algorithm on 

TMS320C55x DSP core using a DSP-C like fixed point 

firmware reference code. By the use of feature of DSP 

core, FFR code could be ported to target device easily and 

efficiently. For efficient real-time implementation, we 

optimized HE—AAC decoder in C-language level using our 

intrinsic library, and then performed optimization in 

assembly language.

We use the real Korean S-DMB data for conformation 

test. The implemented HE-AAC decoder requires the 

computational complexity of maximally 47.72 million 

cycles per second to decode 48 kbps stereo bit-stream. 

And compliance test results confirmed that the developed 

decoder ensured full compliance with ISO 14496—4 audio 

standard and good audio quality.

References

1. ISO/IEC Interanl Standard 13818-7 Generic Coding of Moving 
Pictures and Associated Audio Information -Part 7: Advanced Audio 
Coding, 1997.

140 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL25, NO.4E



2. ISO/IEC 14496-3:2001/Amd 1:2003, Bandwidth extension
3. Thomas Ziegler, Martin Dietz , and Kimis Pei사il, "Writing Firmware 

Reference Code for Fixed Point Processors". International Signal 
Processing(ISPC), Dallas, March 2003.

4. Thomas Ziegler, Klaus Pei사il, Gustavo Hoffmann, and Martin Wolters, 
Using Fixed Point Frimware Reference Code - A Case Study

5. Keun-Sup Lee, Young Che이 Park and Dae Hee Y。나n, "Software 
Optimization of the MPEG-Audio decoder using a 32-bit MCU RISC 
Processor", 2002.

6. ISO/IEC 13818-4 Generic coding of moving pictures and associated 
audio information(Part 4： Compliance testing)

[Profile]

• Hyung-Jung Kim
received the B.S. and the M.S, degrees from Hanyang University, Seoul, 
Korea, in 1993 and 1995. Since 1995, he has been working for mobile 
communication lab., ETRI, Daejeon, Korea. His research interests in이나de 
multimedia real-time application and Software defined radio.

• Deock-Gu Jee
received the B.S. and the M.S, degrees from Chungbuk National University, 
CheongJu, Korea, in 1998 and 2000. Since 2000, he has been working for 
mobile communication lab., ETRI, Daejeon, Korea. His research interests 
include m니timedia real-time application and Software defined ra세。.

Optimization of HE-AAC for Korean S-DMB Using TMS320C55x DSP Core 141


