Nonlinear rheology of polymer melts: a new perspective on finite chain extensibility effects

  • Wagner Manfred H. (TU Berlin, Polymertechnik/Polymerphysik)
  • Published : 2006.12.30

Abstract

Measurements by Luap et al. (2005) of elongational viscosity and birefringence of two nearly monodisperse polystyrene melts with molar masses $M_{w}$ of $206,000g{\cdot}mol^{-1}$ (PS206k) and $465,000g{\cdot}mol^{-1}$ (PS465k) respectively are reconsidered. At higher elongational stresses, the samples showed clearly deviations from the stress optical rule (SOR). The elongational viscosity data of both melts can be modeled quantitatively by the MSF model of Wagner et al. (2005), which is based on the assumption of a strain-dependent tube diameter and the interchain pressure term of Marrucci and Ianniruberto (2004). The only nonlinear parameter of the model, the tube diameter relaxation time, scales with $M_{w}^{2}$. In order to get agreement with the birefringence data, finite chain extensibility effects are taken into account by use of the $Pad\'{e}$ approximation of the inverse Langevin function, and the interchain pressure term is modified accordingly. Due to a selfregulating limitation of chain stretch by the FENE interchain pressure term, the transient elongational viscosity shows a small dependence on finite extensibility only, while the predicted steady-state elongational viscosity is not affected by non-Gaussian effects in agreement with experimental evidence. However, deviations from the SOR are described quantitatively by the MSF model by taking into account finite chain extensibility, and within the experimental window investigated, deviations from the SOR are predicted to be strain rate, temperature, and molar mass independent for the two nearly monodisperse polystyrene melts in good agreement with experimental data.

Keywords

References

  1. Bach, A., K. Almdal, H.K. Rasmussen and O. Hassager, 2003, Elongational viscosity of narrow molar mass distribution polystyrene, Macromolecules 36, 5174-5179 https://doi.org/10.1021/ma034279q
  2. Bird, R.B., Ch.F. Curtiss, R.C. Armstrong and O. Hassager, 1987, Dynamics of Polymeric Liquids Vol. 2. Kinetic Theory, Wiley and Sons, USA
  3. Cathey, Ch.A. and G.G. Fuller, 1990, The optical and mechanical response of flexible polymer solutions to extensional flow, J. Non-Newtonian Fluid Mech. 34, 63-68 https://doi.org/10.1016/0377-0257(90)80012-O
  4. Cohen, A., 1991, A Pade approximant to the inverse Langevin function, Rheol. Acta 30, 270-273 https://doi.org/10.1007/BF00366640
  5. Doi, M. and S.F. Edwards, 1978, Dynamics of concentrated polymer systems. Part 2.- Molecular motion under flow, J. Chem. Soc., Faraday Trans. 2 74, 1802-1817 https://doi.org/10.1039/f29787401802
  6. Doi, M. and S.F. Edwards, 1979, Dynamics of concentrated polymer systems. Part 4.- Rheological properties, J. Chem. Soc., Faraday Trans. 2 75, 38-54 https://doi.org/10.1039/f29797500038
  7. Fan, B., D.O. Kazmer, W.C. Bushko, R.P. Theriault and A.J. Poslinski, 2004, Biregringence prediction of optical media, Polym. Eng. Sci. 44, 814-824 https://doi.org/10.1002/pen.20073
  8. Fang, G., M. Kroger and H.C. Ottinger, 2000, A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows, J. Rheol. 44, 1293-1317 https://doi.org/10.1122/1.1308522
  9. Fetters, L.J., D.J. Lohse, S.T. Milner and W.W. Graessley, 1999, Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights, Macromolecules 32, 6847-6851 https://doi.org/10.1021/ma990620o
  10. Fuller, G.G., 1995, Optical Rheometry of Complex Fluids, Oxford University Press, New York
  11. Graessley, W.W., 2004, Polymeric Liquids and Networks: Structure and Properties, Garland Science, New York
  12. Hua, Ch.C. and J.D. Schieber, 1998, Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. I. Theory and single-step strain predictions, J. Chem. Phys. 109, 10018-10027 https://doi.org/10.1063/1.477670
  13. Inoue, T, H. Okamoto and K. Osaki, 1991, Birefringence of amorphous polymers. 1. Dynamic measurements on polystyrene, Macromolecules 24, 5670-5675 https://doi.org/10.1021/ma00020a029
  14. Janeschitz-Kriegl, H., 1983, Polymer Melt Rheology and Flow Birefringence, Springer-Verlag, Berlin
  15. Kotaka, T., A. Kojima and M. Okamoto, 1997, Elongational flow opto-rheometry for polymer melts- 1. Construction of an elongational flow opto-rheometer and some preliminary results, Rheol. Acta 36, 646-656
  16. Kroger, M., C. Luap and R. Muller, 1997, Polymer melts under uniaxial elongational flow: Stress-optical behavior from experiments and nonequilibrium molecular dynamics computer simulations, Macromolecules 30, 526-539 https://doi.org/10.1021/ma960317c
  17. Larson, R.G., 1988, Constitutive Equations for Polymer Melts, Butterworths, Stoneham
  18. Lodge, A.S., 1955, Variation of Flow Birefringence with Stress, Nature 176, 838-839 https://doi.org/10.1038/176838a0
  19. Luap, C., Ch. Muller, T. Schweizer, and D.C. Venerus, 2005, Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution, Rheol. Acta 45, 83-91 https://doi.org/10.1007/s00397-005-0452-5
  20. Marrucci, G. and N. Grizzuti, 1988, Fast flows of concentrated polymers: Predictions of the tube model on chain stretching, Gazz Chim Italiana 118, 179-185
  21. Marrucci, G. and G. Ianniruberto, 2004, Interchain pressure effect in extensional flows of entangled polymer melts, Macromolecules 37, 3934-3942 https://doi.org/10.1021/ma035501u
  22. Matsumoto, T. and D.C. Bogue, 1977, Stress birefringence in amorphous polymers under nonisothermal conditions, J. Polym Sci. Polym. Phys. 15, 1663-1674 https://doi.org/10.1002/pol.1977.180150914
  23. Mead, D.W. and R.G. Larson, 1990, Rheoptical study of isotropic solutions of stiff polymers, Macromolecules 23, 2524-2533 https://doi.org/10.1021/ma00211a021
  24. Mead, D.W. and L.G. Leal, 1995, The reptation model with segmental stretch. I. Basic equations and general properties, Rheol. Acta 34, 339-359 https://doi.org/10.1007/BF00367151
  25. Mead D.W., R.G. Larson and M. Doi, 1998, A molecular theory for fast flows of entangled polymers, Macromolecules 31, 7895-7914 https://doi.org/10.1021/ma980127x
  26. Muller, R. and D. Froelich, 1985, New extensional rheometer for elongational viscosity and flow birefringence measurements: some results on polystyrene melts, Polymer 26, 1477-1482 https://doi.org/10.1016/0032-3861(85)90080-1
  27. Muller, R. and J.J. Pesce, 1994, Stress-optical behaviour near the Tg and melt flow-induced anisotropy in amorphous polymers, Polymer 35, 734-739 https://doi.org/10.1016/0032-3861(94)90870-2
  28. Oda, K., J.L. White and E.S. Clark, 1978, Influence of melt deformation history on orientation in vitrified polymers, Polym. Eng. Sci. 18, 53-59 https://doi.org/10.1002/pen.760180111
  29. Ottinger, H.C., 1999, A thermodynamically admissible reptation model for fast flows of entangled polymers, J. Rheol. 43, 1461- 1493 https://doi.org/10.1122/1.551055
  30. Pearson, D.S., E. Herbolzheimer, N. Grizzuti and G. Marrucci, 1991, Transient behavior of entangled polymers at high shear rates, J. Polym. Sci. B: Polym. Phys. 29, 1589-1597 https://doi.org/10.1002/polb.1991.090291304
  31. Pellens, L., J. Vermant and J. Mewis, 2005, Deviations from the stress-optical rule in telechelic associative polymer solutions, Macromolecules 38, 1911-1918 https://doi.org/10.1021/ma047672k
  32. Philippoff, W., 1956, Flow-birefringence and stress, Nature 178, 811-812 https://doi.org/10.1038/178811a0
  33. Rothstein, J.P. and G.H. McKinley, 2002, A comparison of the stress and birefringence growth of dilute, semi-dilute and concentrated polymer solutions in uniaxial extensional flows, J. Non-Newtonian Fluid Mech. 108, 275-290 https://doi.org/10.1016/S0377-0257(02)00134-9
  34. Sridhar, T., D.A. Nguyen and G.G. Fuller, 2000, Birefringence and stress growth in uniaxial extension of polymer solutions, J. Non-Newtonian Fluid Mech. 90, 299-315 https://doi.org/10.1016/S0377-0257(99)00080-4
  35. Subramanian, P.R. and V. Galiatsatos, 1993, Stress-optical properties of bimodal polymer networks, Makromol. Chem., Macromol. Symp. 76, 233-240
  36. Talbott, W.H. and J.D. Goddard, 1979, Streaming birefringence in extensional flow of polymer solutions, Rheol. Acta 18, 505-517 https://doi.org/10.1007/BF01736956
  37. van Meerveld, J., 2004, Validity of the linear stress optical rule in mono-, bi- and polydisperse systems of entangled linear chains, J. Non-Newtonian Fluid Mech. 123, 259-267 https://doi.org/10.1016/j.jnnfm.2004.09.003
  38. Venerus, D.C., S.-H. Zhu and H.C. Ottinger, 1999, Stress and birefringence measurements during the uniaxial elongation of polystyrene melts, J. Rheol. 43, 795-813 https://doi.org/10.1122/1.551004
  39. Wagner, M.H., 1990, The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its comparison to the Doi-Edwards model, Rheol. Acta 29, 594-603 https://doi.org/10.1007/BF01329306
  40. Wagner, M.H. and J. Schaeffer, 1992, Nonlinear measures for general biaxial extension of polymer melts, J. Rheol. 36, 1-26 https://doi.org/10.1122/1.550338
  41. Wagner, M.H., P. Rubio and H. Bastian, 2001, The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release, J. Rheol. 45, 1387-1412 https://doi.org/10.1122/1.1413503
  42. Wagner, M.H., M. Yamaguchi and M. Takahashi, 2003, Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model, J. Rheol. 47, 779-793 https://doi.org/10.1122/1.1562155
  43. Wagner, M.H., S. Kheirandish and O. Hassager, 2005, Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts, J. Rheol. 49, 1317-1327 https://doi.org/10.1122/1.2048741
  44. Wales, J.L.S., 1976, The Application of Flow Birefringence to Rheological Studies of Polymer Melts, Delft University Press
  45. Winter, H.H. and M. Mours, 2003, IRIS Developments, http://rheology.tripod.com/
  46. Ye, X. and T. Sridhar, 2005, Effects of the polydispersity on rheological properties of entangled polystyrene solutions, Macromolecules 38, 3442-3449 https://doi.org/10.1021/ma049642n