Prestack Depth Migration for Gas Hydrate Seismic Data of the East Sea

동해 가스 하이드레이트 탄성파자료의 중합전 심도 구조보정

  • Jang, Seong-Hyung (Korea Institute of Geoscience and Mineral Resources, Petroleum and Marine Resource) ;
  • Suh, Sang-Yong (Korea Institute of Geoscience and Mineral Resources, Petroleum and Marine Resource) ;
  • Go, Gin-Seok (Chosun University, Resource Engineering)
  • 장성형 (한국지질자원연구원 석유해저자원연구부) ;
  • 서상용 (한국지질자원연구원 석유해저자원연구부) ;
  • 고진석 (조선대학교 자원공학과)
  • Published : 2006.12.30

Abstract

In order to study gas hydrate, potential future energy resources, Korea Institute of Geoscience and Mineral Resources has conducted seismic reflection survey in the East Sea since 1997. one of evidence for presence of gas hydrate in seismic reflection data is a bottom simulating reflector (BSR). The BSR occurs at the interface between overlaying higher velocity, hydrate-bearing sediment and underlying lower velocity, free gas-bearing sediment. That is often characterized by large reflection coefficient and reflection polarity reverse to that of seafloor reflection. In order to apply depth migration to seismic reflection data. we need high performance computers and a parallelizing technique because of huge data volume and computation. Phase shift plus interpolation (PSPI) is a useful method for migration due to less computing time and computational efficiency. PSPI is intrinsically parallelizing characteristic in the frequency domain. We conducted conventional data processing for the gas hydrate data of the Ease Sea and then applied prestack depth migration using message-passing-interface PSPI (MPI_PSPI) that was parallelized by MPI local-area-multi-computer (MPI_LAM). Velocity model was made using the stack velocities after we had picked horizons on the stack image with in-house processing tool, Geobit. We could find the BSRs on the migrated stack section were about at SP 3555-4162 and two way travel time around 2,950 ms in time domain. In depth domain such BSRs appear at 6-17 km distance and 2.1 km depth from the seafloor. Since energy concentrated subsurface was well imaged we have to choose acquisition parameters suited for transmitting seismic energy to target area.

한국지질자원연구원은 1997년부터 새로운 에너지 자원으로 활용 가능성을 포함하고 있는 가스 하이드레이트를 조사하기 위해 동해 일원에서 탄성파탐사를 실시하고 있다. 탄성파 반사자료로부터 가스 하이드레이트 부존여부를 확인하는 방법은 해저면과 평행하면서 위상이 반대로 나타나는 고진폭 반사파 Bottom Simulating Reflector (BSR)과 BSR상부에서의 진폭감소, 하부에서 진폭증가와 구간속도 감소 둥을 들 수 있다. 대용량 탐사자료로 구성된 탄성파 반사자료에 깊이영역 구조보정을 적용하기 위해서는 고성능 컴퓨터와 병렬처리 기술이 필요하다. PSPI법은 적은 컴퓨터 계산량과 효율성 그리고 주파수 영역에서 구조적으로 병렬화가 용이한 특성을 지니고 있어 구조보정에 많이 이용되고 있다. 여기에서는 동해 가스 하이드레이트 탄성파 반사자료에 대한 일반자료처리와 함께 BSR로 여길 수 있는 구간에 대해 message passing interface_local area multicomputers(MPI_LAM)으로 병렬 코드화된 MPI PSPI를 이용하여 깊이영역 중합 전 구조보정에 적용하였다. 중합 전 깊이영역 구조보정 입력자료를 위한 속도모델은 자체 개발된 지오빗을 이용하여 중합 단면도로부터 지층경계면을 구하고 중합속도를 이용하여 제작하였다. BSR은 시간영역구조보정 된 중합 단면도상에서 음원모음도 3555-4162 사이와 왕복주시 2950 ms 부근에서 확인되지만 깊이영역 단면도에서는 해수면 6 km에서 17 km사이, 해저면에서 약 2.1km 깊이영역에서 나타남을 알 수 있다. 또한 구조보정 결과 반사파 에너지가 집중되는 지점에서 영상화가 잘 이루어지므로 관심대상 지역에 에너지를 많이 보낼 수 있는 자료취득변수를 결정해야 함을 알 수 있다.

Keywords

References

  1. Andreassen, K., Hart, E.H. and MacKay, M. (1997) Amplitude versus offset modeling of the bottom simulation reflection associated with submarine gas hydrate. Marine Geology, v. 137, p. 25-40 https://doi.org/10.1016/S0025-3227(96)00076-X
  2. Bonomi, E., Brieger, L., Nardone C. and Pieroni, E. (1998) PSPI: A scheme for high-performance echo reconstruction imaging. Computers in Physics, v. 12, p. 126-132 https://doi.org/10.1063/1.168623
  3. Dillon, W.P. and Paull, C.K. (1983) Marine gas hydrate-ii: geophysical evidence. In:Natural Gas Hydrates: Properties. Occurrence and Recovery (Ed.J. L. Cox), Butterworth, Boston, p. 73-90
  4. Gazdag, J. and Sguazzero, P. (1984) Migration of seismic data by phase shift plus interpolation. Geophysics, v. 49, p. 124-131 https://doi.org/10.1190/1.1441643
  5. Loewenthal, D., Robertson, L. LU. and Sherwood, J. (1976) The wave equation applied to migration. Geophysical Prospecting, v. 24, p. 380-399 https://doi.org/10.1111/j.1365-2478.1976.tb00934.x
  6. Makogon, Y.F. (1997) Hydrate of hydrocarbons, PennWell Pub., Tulsa, Oklahoma. U.S., 482p
  7. Nichols, D.E. (1996) Maximum energy traveltimes calculated in the seismic frequency band. Geophysics, v. 61, p. 253-263 https://doi.org/10.1190/1.1443946
  8. Ostrander, W.J. (1984) Plane wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics, v. 49, p. 1637-1648 https://doi.org/10.1190/1.1441571
  9. Shipley, T.H., Houston, M.H., Buffler, R. TI, Shaub, F.J., McMilen, K.J., Ladd, J.W and Worzel, J.L. (1979) Seismic evidence for widespread possible gas hydrate horizons continental slopes and rises. AAPG Bull., v. 63, p. 2204-2213
  10. Stoffa, P.L., Fokkema, J.T., de Luna Freire, R.M. and Kessinger, W.P. (1990) Split-step Fourier migration. Geophysics, v. 55, p. 410-421 https://doi.org/10.1190/1.1442850
  11. Stoll, R.D. (1974) Effect of gas hydrates in sediments. In: Nature of Gases in Marine Sediments (Ed. I. R Kaplan). Plenum press, New York, p. 235-248
  12. Suh, S.Y. (2005) Geobit-2.10.14 - the Seismic Data Processing Tool. KIGAM
  13. Suh, S.Y., Chung, B. H. and Jang, S. (1996) An Iterative, Interactive and Unified Seismic Velocity Analysis. KSEG, v. 2, p. 26-32
  14. Whitmore, M.D. (1983) Iterative depth migration by backward time propagation. The 53 th Ann. Internat. Mtg., Soc. Explt., Geophysics
  15. Yang, D.W and Yang S.J, (1996) A study on Detection of Gas Reservoirs by AVO and Complex Analysis. KSGE, v. 33, p. 340-348