An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory

개선된 일차전단변형이론을 이용한 복합재료 적층평판의 고정밀 해석

  • Published : 2006.12.30

Abstract

In this paper, an efficient yet accurate stress analysis based on the first-order shear deformation theory (FSDT) is presented. The transverse shear strain energy is modified via the mixed variational theorem, so that the shear correction factors are automatically involved in the formulation. In the mixed variational formulation, the transverse stresses are taken to be functions subject to variations. The transverse shear stresses based on an efficient higher order plate theory (EHOPT, Cho and Parmerter, 1993) are utilized and modified, while the transverse normal stress is assumed to be the third-order polynomial of thickness coordinates, which satisfies both zero transverse shear stresses and prescribed surface fractions in top and bottom surfaces. On the other hand, the displacements are assumed to be those of the FSDT Resulting strain energy expressions are referred to as an EFSDTM3D that stands for an enhanced first-order shear deformation theory based on the mixed formulation for three dimensional elasticity, The developed EFSDTM3D preserves the computational advantage of the classical FSDT while allowing for important local through-the-thickness variations of displacements and stresses through the recovery procedure that is based on the least square minimization of in-plane stresses. Comparisons of displacements and stresses of both laminated and sandwich plates using the present theory are made with the classical FSDT, three-dimensional exact solutions, and available data in the literature.

본 논문에서는 일차전단변형이론(FSDT)을 이용한 복합재료 적층평판의 고정밀 해석기법을 소개한다. 전단수정계수가 자동적으로 포함되도록 횡방향 전단 변형에너지를 혼합변분이론(mixed variational theorem)을 이용하여 개선하였다. 혼합변분이론에서는 변분을 횡방향 응력들에 대해서만 취하였다. 가정된 횡방향 전단응력은 효율적인 고차이론(Cho and Parmerter, 1993)으로부터 구하였다 횡방향 수직응력은 3차 다항식으로 가정하였고, 무전단 응력조건과 평판의 윗면과 아랫면에서의 응력을 만족하는 조건을 부과함으로써 얻었다. 한편, 변위들에 대해서는 일차전단변형이론의 변위장을 사용하였다. 이렇게 해서 얻어진 변형 에너지를 본 논문에서는 EFSDTM3D이라고 명명 하였다. 본 논문에서 개발된 EFSDTM3D는 변위와 응력의 계산에서 고전적인 FSDT와 같은 정도의 계산 효율을 가지면서, 동시에 변위와 응력의 두께방향의 정확도를 면내 방향 응력들에 대한 최소오차자승법에 기초하여 응력 회복 과정을 적용함으로써 개선하였다. 계산된 결과는 고전적인 FSDT, 3차원 탄성해, 그리고 참고문헌 중에서 이용 가능한 결과들과 비교하여 검증하였다.

Keywords

References

  1. 조맹효 (1994) 복합재료 적층판의 고차 이론의 검토, 대한기계학회지, 34(7), pp.517 -526
  2. 조맹효 (2002) 복합재료 적층 평판과 쉘의 전산해석 기법에 관한 소고, 한국전산구조공학회지, 전산구조공학. 1225-1569, 제 15권 1호. pp.17-30
  3. Carrera, E. (1998) Evaluation of layerwise mixed theories for laminated plates analysis. AIAA Journal, 36(5), pp.830-839 https://doi.org/10.2514/2.444
  4. Carrera, E. (1999). A study of transverse normal stress effect on vibration of multilayered plates and shells, Journal of Sound and Vibration, 225, pp.803-829 https://doi.org/10.1006/jsvi.1999.2271
  5. Carrera, E. (2003) Historical review of zig-zag theories for multilayered plates and shells, Applied Mechanics Review, 56, pp.287-308 https://doi.org/10.1115/1.1557614
  6. Cho, M., Choi, Y.J. (2001) A new postprocessing method for laminated composites of general lamination configurations, Composite Structures, 54, pp.397-406 https://doi.org/10.1016/S0263-8223(01)00076-9
  7. Cho. M., Kim, J.H. (1996a) Postprocess method using displacement field of higher order laminated composite plate theory, AIAA Journal, 34, pp.362-368 https://doi.org/10.2514/3.13072
  8. Cho, M., Kim. J.-S. (1996b) Four-noded finite element post-process method using a displacement filed of higher order laminated composite plate theory, Computers and Structures, 61. pp.283- 290 https://doi.org/10.1016/0045-7949(96)00043-0
  9. Cho, M., Kim. J.-S. (1997) Improved mindlin plate stress analysis for laminated composites in finite element method, AIAA Journal, 35, pp.587-590 https://doi.org/10.2514/2.145
  10. Cho, M., Parmerter, R.R. (1992) An efficient higher order plate theory for laminated composites, Composite Structures, 20, pp.113-123 https://doi.org/10.1016/0263-8223(92)90067-M
  11. Cho. M., Parmerter, R.R. (1993) Efficient higher order composite plate theory for general lamination configurations, AIAA Journal, 31. pp.1299-1306 https://doi.org/10.2514/3.11767
  12. DiSciuva. M. (1986) Vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model, Journal of Sound and Vibration, 105, pp.425-442 https://doi.org/10.1016/0022-460X(86)90169-0
  13. Kim. J.-S. (2004) Reconstruction of first-order shear deformation theory for laminated and sandwich shells, AIAA Journal, 42, pp.1685- 1697 https://doi.org/10.2514/1.2346
  14. Kim. J.-S., Cho, M. (1998) Matching technique of postprocess method using displacement fields of higher order plate theories, Composite Structures, 43, pp.71 -78 https://doi.org/10.1016/S0263-8223(98)00099-3
  15. Kim. J. -S., Cho, M. (2005) Enhanced first-order shear deformation theory for laminated and sandwich plates, Journal of Applied Mechanics, 72. pp.809- 817 https://doi.org/10.1115/1.2041657
  16. Kim, J. –S., Cho, M. (2006) Enhanced modeling of laminated and sandwich plates via strain energy transformation, Composites Science and Technology, in press
  17. KnightJr, N.F., Qi, Y. (1997) Restatement of first-order shear-deformation theory for laminated plates, International Journal of Solids and Structures, 34, pp.481 -492 https://doi.org/10.1016/S0020-7683(96)00032-7
  18. Lo, K.H., Christensen, R.M., Wu, F.M. (1977) A higher-order theory of plate deformation part 2: laminated plates, Journal Applied Mechanics, 44, pp.669-676 https://doi.org/10.1115/1.3424155
  19. Mindlin, R.D. (1951) Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates, Journal of Applied Mechanics, 18. pp.31 -38
  20. Noor, A.K., Burton, W.S. (1989) Assessment of shear deformation theories for multilayered composite plates, Applied Mechanics Reviews, 42. pp.1-13 https://doi.org/10.1115/1.3152418
  21. Noor, A.K., Burton. W.S. (1990) Stress and free vibration analysis of multilayered composite plates, Composite Structures, 14. pp.233-265 https://doi.org/10.1016/0263-8223(90)90050-O
  22. Pagano, N.J. (1970) Influence of shear coupling in cylindrical bending of anisotropic laminates, Journal of Composite Materials, 4. pp.330-343 https://doi.org/10.1177/002199837000400305
  23. Pandya. B.N., Kant, T. (1988) Finite element stress analysis of lamianted composite plates using higher order displacement model, Composites Science and Technology, 32. pp.137-155 https://doi.org/10.1016/0266-3538(88)90003-6
  24. Reddy, J.N. (1984) A simple higher-order theory for laminated composite plates, Journal Applied Mechanics, 51. pp.745-752 https://doi.org/10.1115/1.3167719
  25. Reddy, J.N. (1987) A generalization of two-dimensional theories of laminated plates, Communication in Numerical Methods in Engineering, 3. pp.173-180 https://doi.org/10.1002/cnm.1630030303
  26. Reddy, J.N., RobbinsJr., D.H. (1994) Theories and computational models for composite laminates, Applied Mechanics Reviews, 47. pp.147-169 https://doi.org/10.1115/1.3111076
  27. Reissner, E. (1945) The effect of tranverse shear deformation on the bending of elastic plates, Journal of Applied Mechanics, 12. pp.69-77
  28. Reissner, E. (1986) On a mixed variational theorem and on shear deformable plate theory, International Journal of Numerical Methods in Engineering, 23. pp.193-198 https://doi.org/10.1002/nme.1620230203
  29. Sutyrin, V. G. (1997) Derivation of plate theory accounting asymptotically correct shear deformation, Journal Applied Mechanics, 64. pp.905-915 https://doi.org/10.1115/1.2788998
  30. Tarn, J.-Q., Wang. Y.-B. (1997) A refined asymptotic theory and computational model for multilayered composite plates, Computer Methods in Applied Mechanics and Engineering, 145. pp.167-184 https://doi.org/10.1016/S0045-7825(96)01192-9
  31. Whitney, J.M. (1972) Stress analysis of thick laminated composites and sandwich plates, Journal of Composite Materials, 6. pp.426-440
  32. Whitney, J.M. (1973) Shear correction factors for orthotropic laminates under static load, Journal Applied Mechanics, 40. pp.302-304 https://doi.org/10.1115/1.3422950
  33. Whitney, J.M., Pagano, N.J. (1970) Shear deformation in heterogeneous anisotropic plates, Journal of Applied Mechanics, 37. pp.1031-1036 https://doi.org/10.1115/1.3408654
  34. Yu, W., (2005) Mathematical construction of a Reissner-Mindlin plate theory for composite laminates, International Journal of Solids and Structures, 42, pp.6680-6699 https://doi.org/10.1016/j.ijsolstr.2005.02.049
  35. Yu, W., Hodges. D.H., Volovoi , V.V. (2002) Asymptotic construction of Reissner-like composite plate theory with accurate strain recovery, International Journal of Solids and Structures, 39, pp.5185-5203 https://doi.org/10.1016/S0020-7683(02)00410-9