DOI QR코드

DOI QR Code

Protein-Protein Interaction Reliability Enhancement System based on Feature Selection and Classification Technique

특징 추출과 분석 기법에 기반한 단백질 상호작용 데이터 신뢰도 향상 시스템

  • 이민수 (이화여자대학교 컴퓨터학과) ;
  • 박승수 (이화여자대학교 컴퓨터학과) ;
  • 이상호 (이화여자대학교 컴퓨터학과) ;
  • 용환승 (이화여자대학교 컴퓨터학과) ;
  • 강성희 (명지대학교 방목기초교육대학)
  • Published : 2006.12.31

Abstract

Protein-protein interaction data obtained from high-throughput experiments includes high false positives. In this paper, we introduce a new protein-protein interaction reliability verification system. The proposed system integrates various biological features related with protein-protein interactions, and then selects the most relevant and informative features among them using a feature selection method. To assess the reliability of each protein-protein interaction data, the system construct a classifier that can distinguish true interacting protein pairs from noisy protein-protein interaction data based on the selected biological evidences using a classification technique. Since the performance of feature selection methods and classification techniques depends heavily upon characteristics of data, we performed rigorous comparative analysis of various feature selection methods and classification techniques to obtain optimal performance of our system. Experimental results show that the combination of feature selection method and classification algorithms provide very powerful tools in distinguishing true interacting protein pairs from noisy protein-protein interaction dataset. Also, we investigated the effects on performances of feature selection methods and classification techniques in the proposed protein interaction verification system.

대용량 실험으로부터 산출된 단백질 상호작용 데이터는 위양성(false positive) 데이터의 비율이 높다는 단점을 가지고 있다. 본 논문에서는 오류가 섞여있는 단백질 상호작용 데이터를 입력으로 받아 각 단백질 상호작용의 신뢰도를 검증하는 시스템을 제안하고 구현하였다. 제안 시스템은 단백질 상호작용 데이터에 상호작용의 근거로서 사용될 수 있는 다양한 생물학적 특징들에 관한 데이터를 통합하고 특징 선택 방법을 사용하여 통합된 속성들 중 위양성 여부를 판별하는데 가장 적합한 특징들을 선택한 후 데이터 마이닝 분류 알고리즘을 적용하여 대용량 실험으로부터 산출된 단백질 상호작용 데이터의 신뢰도를 평가한다. 특징 선택의 결과와 분류 기법의 성능은 데이터 특성에 매우 의존하므로, 제안시스템에 가장 적합한 속성 부분집합과 가장 좋은 성능을 내는 분류 알고리즘을 찾기 위해 다양한 특징 선택 방법과 데이터 마이닝 분류 알고리즘들을 적용하고 그 성능을 다각적으로 비교분석 하였다. 실험 결과, 특징 선택 방법과 분류 알고리즘을 결합시킨 제안 시스템은 오류 데이터가 섞여있는 단백질 상호작용 데이터에서 실제로 상호작용하는 단백질 쌍을 골라내는 작업에 있어 기존 연구들에 비해 매우 뛰어난 성능을 보여줬다. 또한 본 연구를 통해 단백질 상호작용 데이터의 신뢰도를 검증함에 있어서 다양한 특징 선택 방법들과 분류 알고리즘들이 성능에 미치는 영향에 관해서도 정리할 수 있었다.

Keywords

References

  1. A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani, 'Global Protein Function Prediction from Protein-Protein Interaction Networks,' Nature Biotechnology, Vol.21, pp.697-700, 2003 https://doi.org/10.1038/nbt825
  2. M. P. Samanta and S. Liang, 'Predicting Protein Funcyions from Redundancies in Large-scale Protein Interaction Networks,' PNAS, Vol.100, pp.12579-12583, 2003 https://doi.org/10.1073/pnas.2132527100
  3. M., A. Steffen, Petti, J. Aach, P. D'haeseleer, and G. Church, 'Automated Modeling of Signal Transduction Networks,' BMC Bioinformatics, Vol.3, pp.34-44, 2002 https://doi.org/10.1186/1471-2105-3-34
  4. P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, et al. 'A Comprehensive Analysis of Protein-Protein Interactions in Saccharomyces Cerevisiae,' Nature, Vol.403, pp.623-627, 2000 https://doi.org/10.1038/35001009
  5. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, et al. 'A Comprehensive Two-Hybrid Analysis to Explore the Yeast Protein Interactome,' PNAS, Vol.98, pp.4569-4574, 2001 https://doi.org/10.1073/pnas.061034498
  6. A. C. Gavin, M. Bosche, R. Krause, et al. 'Functional Organization of the Yeast Proteome by Systematic Analysis of Protein Complexes,' Nature, Vol.415, pp.141-147, 2002 https://doi.org/10.1038/415141a
  7. Y. Ho, A. Gruhler, A. Heilbut, et al. 'Systematic Indenification of Protein Complexes in Saccharomyces Cerevisiae by Mass Spectrometry,' Nature, Vol.415, pp.180-183, 2002 https://doi.org/10.1038/415180a
  8. C. von Mering, R. Krause, B. Snel, M. cornell, et al. 'Comparative Assessment of Large-Scale Data Sets of Protein-Protein Interactions,' Nature, Vol.417, pp.399-403, 2002 https://doi.org/10.1038/nature750
  9. E. Sprinzak, S. Sattath and H. J. Margalit. 'How reliable are experimental Protein-Protein Interaction data?' Molecular Biology, Vol. 327, pp.919-923, 2003 https://doi.org/10.1016/S0022-2836(03)00239-0
  10. C. M. Deane, L. Salwinski, I. Xenarios, and D. Eisenber, 'ProteinInteractions: Two Methods for Assessment of the Reliability of High Throughput Observations,' Molecular and Cellular Proteomics, Vol.1, pp.349-356, 2002 https://doi.org/10.1074/mcp.M100037-MCP200
  11. H. Ge, Z, Liu, G. M. Church, and M. Vidal, 'Correlation between Transcriptome and Interactome Mapping Data from Saccharomyces Cerevisiae,' Nature Genetics, Vol.29, pp.482-486, 2001 https://doi.org/10.1038/ng776
  12. R. Jasen, D. Greenbaum and M. Gerstein, 'Relating Whole-genome Expression Data with Protein-Protein Interaction,' Genome Research Vol.12, pp.37-46, 2002 https://doi.org/10.1101/gr.205602
  13. N. Bhardwaj and H. Lu, 'Correlation between Gene Expression Profiles and Protein-Protein Interactions within and across Genomes,' Bioinformatics vol.21, pp.2730-2738, 2005 https://doi.org/10.1093/bioinformatics/bti398
  14. L. R. Mattews, P. Vaglio, J. Reboul, H. Ge, et al. 'Identification of Potential Interaction Networks using Sequence-Based Searches for Conserved Protein-Protein Iinteractions or Interologs'' Genome Research, Vol.11, pp.2120-2126, 2001 https://doi.org/10.1101/gr.205301
  15. T. Sato, Y. Yamanishi, M. Kanehisa, and H. Toh, 'The Inference of Protein-Protein Interactions by Co-evolutionary Analysis is Improved by Excluding the Information about the Phylogenetic Relationships,' Bionformatics Vol.21, pp.3482-3489, 2005 https://doi.org/10.1093/bioinformatics/bti564
  16. R. Jansen, H. Yu, D. Greenbaum et al. 'A Bayesian Network Approach for Predictiong Protein-Protein Interactions from Genomic Data,' Science 203, 449-153, 2003 https://doi.org/10.1126/science.1087361
  17. L. J. Lu, A, Paccanaro, H. Yu, 'Assessing the Limits of Genomic Data Integration for Predictiong Protein Networks,' Genome Research 15, 9455-953, 2005 https://doi.org/10.1101/gr.3610305
  18. M. Deng, F, Sun, T. Chen, 'Assessment of the Reliablity of Protein-Protein Interactions and Protein Function Prediction,' Symp. Biocomputing, 140-151, 2003
  19. A. Patil and H. Nakamura, 'Filtering High-throughput Protein-Protein Interaction Data using a Combination of Genomic Features,' BMC Bionformatics, 6:100-112, 2005 https://doi.org/10.1186/1471-2105-6-100
  20. I. J. Witten and E. Frank, Data Mining: Practical Machine Learning Tools with Java Implementations. Morgan Kaufmann, San Francisco, CA. 2000
  21. P. N. Tan, M. Stenbach, V. Kumar, Introduction to Data Mining, Addison Wesley, 2005
  22. I. Guyon and A. Elisseff, 'An introduction to variable and feature selection,' Journal of machine learning research, 3, 1157-1182, 2003 https://doi.org/10.1162/153244303322753616
  23. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA. 1993
  24. D. Aha and D. Kibler, 'Instance-based Learning Algorithms,' Machine Learing Vol.6, pp.37-66, 1991 https://doi.org/10.1007/BF00153759
  25. G. H. John and P. Langley, 'Estimating Continuous Distributions in Bayesian Classifiers,' Proc. of the 11th Conf. On Uncertainty in Artificial Intelligence.pp.338-345, Morgan Kaufmann, San Mateo. 1995
  26. J. Platt, 'Fast Training of Support Vector Machines using Sequential Minimal Optimization,' Advances in kernel methods -support vector learning, Schoelkopf, B., Burges, C. and Smola, A. eds., MIT Press. 1998
  27. H. W. Mewes, D. Fishman, K. F. X. Mayer, et al, 'MIPS: Analysis and Annotation of Proteins from Whole Genomes in 2005,' Nucleic Acids Research 34, D169-D172, 2005 https://doi.org/10.1093/nar/gkj148
  28. U. Guldener, M. Munsterkotter, M. Oesterheld, et al. 'MPact: the MIPS Protein Interaction Resource on Yeast,' Nucleic Acids Research 34, D436-D441, 2006 https://doi.org/10.1093/nar/gkj003
  29. The Gene Ontology Consortium, 'Gene Ontology: Tool for the unfication of biology,' Nature Genetics 25, 25-29, 2000 https://doi.org/10.1038/75556
  30. A. Ruepp, A. Zollner , D. Maier, K. Albermann, et al.: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 32, 5539-5545, 2004 https://doi.org/10.1093/nar/gkh894