References
- A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani, 'Global Protein Function Prediction from Protein-Protein Interaction Networks,' Nature Biotechnology, Vol.21, pp.697-700, 2003 https://doi.org/10.1038/nbt825
- M. P. Samanta and S. Liang, 'Predicting Protein Funcyions from Redundancies in Large-scale Protein Interaction Networks,' PNAS, Vol.100, pp.12579-12583, 2003 https://doi.org/10.1073/pnas.2132527100
- M., A. Steffen, Petti, J. Aach, P. D'haeseleer, and G. Church, 'Automated Modeling of Signal Transduction Networks,' BMC Bioinformatics, Vol.3, pp.34-44, 2002 https://doi.org/10.1186/1471-2105-3-34
- P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, et al. 'A Comprehensive Analysis of Protein-Protein Interactions in Saccharomyces Cerevisiae,' Nature, Vol.403, pp.623-627, 2000 https://doi.org/10.1038/35001009
- T. Ito, T. Chiba, R. Ozawa, M. Yoshida, et al. 'A Comprehensive Two-Hybrid Analysis to Explore the Yeast Protein Interactome,' PNAS, Vol.98, pp.4569-4574, 2001 https://doi.org/10.1073/pnas.061034498
- A. C. Gavin, M. Bosche, R. Krause, et al. 'Functional Organization of the Yeast Proteome by Systematic Analysis of Protein Complexes,' Nature, Vol.415, pp.141-147, 2002 https://doi.org/10.1038/415141a
- Y. Ho, A. Gruhler, A. Heilbut, et al. 'Systematic Indenification of Protein Complexes in Saccharomyces Cerevisiae by Mass Spectrometry,' Nature, Vol.415, pp.180-183, 2002 https://doi.org/10.1038/415180a
- C. von Mering, R. Krause, B. Snel, M. cornell, et al. 'Comparative Assessment of Large-Scale Data Sets of Protein-Protein Interactions,' Nature, Vol.417, pp.399-403, 2002 https://doi.org/10.1038/nature750
- E. Sprinzak, S. Sattath and H. J. Margalit. 'How reliable are experimental Protein-Protein Interaction data?' Molecular Biology, Vol. 327, pp.919-923, 2003 https://doi.org/10.1016/S0022-2836(03)00239-0
- C. M. Deane, L. Salwinski, I. Xenarios, and D. Eisenber, 'ProteinInteractions: Two Methods for Assessment of the Reliability of High Throughput Observations,' Molecular and Cellular Proteomics, Vol.1, pp.349-356, 2002 https://doi.org/10.1074/mcp.M100037-MCP200
- H. Ge, Z, Liu, G. M. Church, and M. Vidal, 'Correlation between Transcriptome and Interactome Mapping Data from Saccharomyces Cerevisiae,' Nature Genetics, Vol.29, pp.482-486, 2001 https://doi.org/10.1038/ng776
- R. Jasen, D. Greenbaum and M. Gerstein, 'Relating Whole-genome Expression Data with Protein-Protein Interaction,' Genome Research Vol.12, pp.37-46, 2002 https://doi.org/10.1101/gr.205602
- N. Bhardwaj and H. Lu, 'Correlation between Gene Expression Profiles and Protein-Protein Interactions within and across Genomes,' Bioinformatics vol.21, pp.2730-2738, 2005 https://doi.org/10.1093/bioinformatics/bti398
- L. R. Mattews, P. Vaglio, J. Reboul, H. Ge, et al. 'Identification of Potential Interaction Networks using Sequence-Based Searches for Conserved Protein-Protein Iinteractions or Interologs'' Genome Research, Vol.11, pp.2120-2126, 2001 https://doi.org/10.1101/gr.205301
- T. Sato, Y. Yamanishi, M. Kanehisa, and H. Toh, 'The Inference of Protein-Protein Interactions by Co-evolutionary Analysis is Improved by Excluding the Information about the Phylogenetic Relationships,' Bionformatics Vol.21, pp.3482-3489, 2005 https://doi.org/10.1093/bioinformatics/bti564
- R. Jansen, H. Yu, D. Greenbaum et al. 'A Bayesian Network Approach for Predictiong Protein-Protein Interactions from Genomic Data,' Science 203, 449-153, 2003 https://doi.org/10.1126/science.1087361
- L. J. Lu, A, Paccanaro, H. Yu, 'Assessing the Limits of Genomic Data Integration for Predictiong Protein Networks,' Genome Research 15, 9455-953, 2005 https://doi.org/10.1101/gr.3610305
- M. Deng, F, Sun, T. Chen, 'Assessment of the Reliablity of Protein-Protein Interactions and Protein Function Prediction,' Symp. Biocomputing, 140-151, 2003
- A. Patil and H. Nakamura, 'Filtering High-throughput Protein-Protein Interaction Data using a Combination of Genomic Features,' BMC Bionformatics, 6:100-112, 2005 https://doi.org/10.1186/1471-2105-6-100
- I. J. Witten and E. Frank, Data Mining: Practical Machine Learning Tools with Java Implementations. Morgan Kaufmann, San Francisco, CA. 2000
- P. N. Tan, M. Stenbach, V. Kumar, Introduction to Data Mining, Addison Wesley, 2005
- I. Guyon and A. Elisseff, 'An introduction to variable and feature selection,' Journal of machine learning research, 3, 1157-1182, 2003 https://doi.org/10.1162/153244303322753616
- R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA. 1993
- D. Aha and D. Kibler, 'Instance-based Learning Algorithms,' Machine Learing Vol.6, pp.37-66, 1991 https://doi.org/10.1007/BF00153759
- G. H. John and P. Langley, 'Estimating Continuous Distributions in Bayesian Classifiers,' Proc. of the 11th Conf. On Uncertainty in Artificial Intelligence.pp.338-345, Morgan Kaufmann, San Mateo. 1995
- J. Platt, 'Fast Training of Support Vector Machines using Sequential Minimal Optimization,' Advances in kernel methods -support vector learning, Schoelkopf, B., Burges, C. and Smola, A. eds., MIT Press. 1998
- H. W. Mewes, D. Fishman, K. F. X. Mayer, et al, 'MIPS: Analysis and Annotation of Proteins from Whole Genomes in 2005,' Nucleic Acids Research 34, D169-D172, 2005 https://doi.org/10.1093/nar/gkj148
- U. Guldener, M. Munsterkotter, M. Oesterheld, et al. 'MPact: the MIPS Protein Interaction Resource on Yeast,' Nucleic Acids Research 34, D436-D441, 2006 https://doi.org/10.1093/nar/gkj003
- The Gene Ontology Consortium, 'Gene Ontology: Tool for the unfication of biology,' Nature Genetics 25, 25-29, 2000 https://doi.org/10.1038/75556
- A. Ruepp, A. Zollner , D. Maier, K. Albermann, et al.: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 32, 5539-5545, 2004 https://doi.org/10.1093/nar/gkh894