DOI QR코드

DOI QR Code

Evaluation of Al CMP Slurry based on Abrasives for Next Generation Metal Line Fabrication

연마제 특성에 따른 차세대 금속배선용 Al CMP (chemical mechanical planarization) 슬러리 평가

  • Cha, Nam-Goo (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Kang, Young-Jae (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Kim, In-Kwon (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Kim, Kyu-Chae (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Park, Jin-Goo (Division of Materials and Chemical Engineering, Hanyang University)
  • 차남구 (한양대학교 재료화학공학부) ;
  • 강영재 (한양대학교 재료화학공학부) ;
  • 김인권 (한양대학교 재료화학공학부) ;
  • 김규채 (한양대학교 재료화학공학부) ;
  • 박진구 (한양대학교 재료화학공학부)
  • Published : 2006.12.27

Abstract

It is seriously considered using Al CMP (chemical mechanical planarization) process for the next generation 45 nm Al wiring process. Al CMP is known that it has a possibility of reducing process time and steps comparing with conventional RIE (reactive ion etching) method. Also, it is more cost effective than Cu CMP and better electrical conductivity than W via process. In this study, we investigated 4 different kinds of slurries based on abrasives for reducing scratches which contributed to make defects in Al CMP. The abrasives used in this experiment were alumina, fumed silica, alkaline colloidal silica, and acidic colloidal silica. Al CMP process was conducted as functions of abrasive contents, $H_3PO_4$ contents and pressures to find out the optimized parameters and conditions. Al removal rates were slowed over 2 wt% of slurry contents in all types of slurries. The removal rates of alumina and fumed silica slurries were increased by phosphoric acid but acidic colloidal slurry was slightly increased at 2 vol% and soon decreased. The excessive addition of phosphoric acid affected the particle size distributions and increased scratches. Polishing pressure increased not only the removal rate but also the surface scratches. Acidic colloidal silica slurry showed the highest removal rate and the lowest roughness values among the 4 different slurry types.

Keywords

References

  1. W. E. Frank, Microelectronic Eng., 33, 85 (1997) https://doi.org/10.1016/S0167-9317(96)00034-2
  2. W. T. Tsenga, Y. L. Wangb and J. Niu, Thin Solid Films, 370, 96 (2000) https://doi.org/10.1016/S0040-6090(00)00941-X
  3. Y. L. Wang, J Wu., C. W. Liu, T.C. Wang and J. Dun, Thin Solid Films, 332, 397 (1998) https://doi.org/10.1016/S0040-6090(98)01200-0
  4. K. Derbyshire, Semiconductor Manufacturing, 7, 17 (2006)
  5. R. F. Schnabel, L. A. Clevenger, G. Costrini, D. M. Dobuzinsky, Filippi, J. Gambino,. G. Y. Lee, R. C. lggulden, C. Lin, Z. G, Lu, X. J. Ning, R. Ramachandran, M. Ronay, D. Tobben and S. J. Weber, Aluminum dual damascene metallization for 0.175 mm DRAM generations and beyond, Microelectronic Eng., 50, 265 (2000) https://doi.org/10.1016/S0167-9317(99)00291-9
  6. F. Malik and M. Hasan, Thin Solid Films, 270, 612 (1995) https://doi.org/10.1016/0040-6090(96)80083-6
  7. H. C. Chen, S. C. Fan, J. H. Lin, Y. L. Cheng, S. P. Jeng and C. M. Wu, Thin Solid Films, 469-470, 487 (2004) https://doi.org/10.1016/j.tsf.2004.06.169
  8. M. Kodera, S. I. Uekusa, Y. Matsui, N. Miyashita, A. Shigeta, S. Takahashi, M. Kawai, H. Kawamoto and M. Tsujimura, Mat. Res. Soc. Symp. Proc., 767, 1 (2003)
  9. I. Beinglass and M. Naik, Thin Solid Films, 320, 35 (1998) https://doi.org/10.1016/S0040-6090(97)01063-8
  10. W. Cho, Y. Ahn, C. W. Back and Y. K. Kim, Microelectronic Eng., 65, 13 (2003) https://doi.org/10.1016/S0167-9317(02)00726-8
  11. Y. Ahn, J. Y. Yoon, C. W. Baek and Y. K. Kim, Wear, 257, 785 (2004) https://doi.org/10.1016/j.wear.2004.03.020
  12. M. R. Oliver, Chemical Mechanical Planarization of Semiconductor Materials, chapter 1, Springer, Heidelberg, (2004)
  13. P. Kucher, H. Aochi, J. Gambino, T. Licata T. Matsuda, S. Nguyen, M. Okazaki, H. Palm and M. Ronay, Appl. Surf. Sci.,91, 359 (1995) https://doi.org/10.1016/0169-4332(95)00147-6
  14. I. Heyvaert, M. Y. Hove, A. Witvrouw, K. Maex, A. Saerens, P. Roussel and H. Bender, Microelectronic Eng., 50, 291 (2000) https://doi.org/10.1016/S0167-9317(99)00295-6
  15. H. S. Kuo and W. T. Tsai, Mater. Chem. and Phy., 69, 53 (2001) https://doi.org/10.1016/S0254-0584(00)00299-6
  16. P. C, Hayes, Process Principles in Minerals & Materials Production, 2nd. ed., chapter 6, Hayes Publishing Co. (1993)

Cited by

  1. Characteristics of Sapphire Wafers Polishing Depending on Ion Conductivity of Silica Sol vol.25, pp.1, 2015, https://doi.org/10.3740/MRSK.2015.25.1.21