DOI QR코드

DOI QR Code

Surface Properties of Polyimide Modified with He/O2/NF3 Atmospheric Pressure RF Dielectric Barrier Discharge

대기압 RF DBD 방전으로 개질된 폴리이미드의 표면특성

  • Lee, Su-Bin (Department of welding and production engineering, Hanbat National University) ;
  • Kim, Yoon-Kee (Department of welding and production engineering, Hanbat National University) ;
  • Kim, Jeong-Soon (Plasma Systems and Materials Inc.)
  • Published : 2006.09.27

Abstract

Polyimides (PI) are treated with $He/O_2$ and $He/O_2/NF_3$ atmospheric pressure rf dielectric barrier discharge in order to investigate the roles of $NF_3$ that is one of the PI etching gases. Surface changes are analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurement. The surface roughness of PI and the ratio of C=O, which is hydrophilic functional group, is more increased by $He/O_2/NF_3$ discharge than by $He/O_2$ discharge. The C=O species on the PI surface is increased up to 30 percent with rf power. The surface roughness of PI is increased from 0.4 to 11 nm with rf power. The water drop contact angles on PI, however, are reduced from $65^{\circ}\;to\;9^{\circ}$ by plasma treatment independently of $NF_3$.

Keywords

References

  1. K. L. Mittal, Polyimides: Synthesis, Characterization, and Applications, Plenum, New York (1984)
  2. M. I. Bessonov, M. M. Koton, V. V. Kudrayavtsen and L.A. Laius, Polyimides: Thermally Stable Polymers, 2nd ed. Plenum, New York (1987)
  3. C. Fdger, M. M. Khojasteh and J. E. McGrath, Polyimides: Materials Chemistry and Characterization, Elsevier, New York (1989)
  4. A. K. S. Ang, E. T. Kang, K. G. Neoh, K. L. Tan, C. Q. Cui and B. T. Lim, Polymer, 41, 489 (2000) https://doi.org/10.1016/S0032-3861(99)00181-0
  5. A. Weber, A. Dietz, R. Pockelmann and C. P. Klages, J. Electrochem. Soc., 3, 1131 (1997) https://doi.org/10.1149/1.1837544
  6. V. SvorGk, E. Arenholz, V. Rybka' and V. Hnatowicz', Nuclear Instruments and Methods in Physics Research B, 122, 663-667 (1997) https://doi.org/10.1016/S0168-583X(96)00829-4
  7. N. Inagaki, S. Tasaka and K. Hibi, J. Polym. Sci, Polym. Chem. 30, 1425 (1992) https://doi.org/10.1002/pola.1992.080300722
  8. G. Rozovskis, J. Vinkevicius and J. Jaciauskiene, J. Adhes. Sci. Technol., 10, 399 (1996) https://doi.org/10.1163/156856196X00490
  9. Z. J. Yu, E. T. Kang and K. G. Neoh, Polymer, 34, 4137 (2002) https://doi.org/10.1016/S0032-3861(02)00263-X
  10. S. Jpark and H. Y. Lee, Journal of Colloid and Interface Science, 185, 267-272 (2005)
  11. J. Y. Zhang, H. Esrom, U. Kogelschartz and G. Eming, J. Adhes. Sci, Technol., 8, 1179 (1994) https://doi.org/10.1163/156856194X01022
  12. M. Celina, H. Kudoh, T. J. Renk, K. T. Gillen and R. L. ?Clough, Radiat. Phys. Chem., 10, 243 (1998) https://doi.org/10.1016/S0969-806X(97)00107-2
  13. H. V. Boening, Plasma Science and Technology, Cornell Press, New York, 1982
  14. X. Li and K. Horita, Carbon, 38, 133 (2000) https://doi.org/10.1016/S0008-6223(99)00108-6
  15. J. B. Donnet, S. J. Park and M. Brendle, Carbon, 30, 263 (1992) https://doi.org/10.1016/0008-6223(92)90089-F
  16. R. Tsunoda, J. Colloid Interface Sci., 188, 224 (1997) https://doi.org/10.1006/jcis.1997.4771
  17. M. C. Granger and G. M. Swain, J. Electrochem. Soc., 146, 4551 (1999) https://doi.org/10.1149/1.1392673
  18. U. Kogelschatz, Plasma chem. Plasma Process., 23, 1 (2003) https://doi.org/10.1023/A:1022470901385
  19. S. H. Kim, S. H. Cho, N.-E. Lee, H. M. Kim, Y. W. Nam and Y. H. Kim, Surface and Coatings Technology, 193, 101-106 (2005) https://doi.org/10.1016/j.surfcoat.2004.08.130
  20. A. W. Adamson, Physical Chemistry of Surfaces, 5th ed. Wiley, New York, Chapter 10, (1990)
  21. O. D. Greenwood, R. D. Boyd, J. Hopkins and J. P. Badyal, J. Adhesion. Sci.Technol., 9, 311 (1995) https://doi.org/10.1163/156856195X00527
  22. J. Kim, K. S. Kim and Y-H. Kim, J. Adhesion Sci. Technol., 3, 175 (1989) https://doi.org/10.1163/156856189X00146
  23. R. Haight, R. C. White. B. D. Silverman, Ho, J. Vac. Sci. Technolo., A, Vac, Surf. Films, 6,2188 (1998)
  24. A. M. Ektessabi and S. Hakamata, Thin Solid Films, 377-378, 621 (2000) https://doi.org/10.1016/S0040-6090(00)01444-9
  25. F. Paupel, C. H. Yang, S. T. Chen and P. S. Ho, J. Appl. Phys., 65, 1911 (1989) https://doi.org/10.1063/1.342903
  26. M. Naddaf, C. Balasubramanian, P. S. Alegaonkar, V. N. Bhokaskar, A. B. Mandle, V. Ganeshan and S. V. Bhoraskar, Nucl. Instr.and Meth, B, 22, 135 (2004)
  27. F. D. Egi tto, L. J. Matienzo, K. J. Blackwell and A. R. Knoll, J. Adhes. Sci. Technol., 8, 411 (1994) https://doi.org/10.1163/156856194X00311
  28. Y. Momose,T. Ohalm, H. Churna, S, Okazaki, T. Saruta, M. Masui and M. Takeuchi, In plasma polymerization and plasma Interactions with polymeric Materials, ed. H. K. Yasuda, P153, New York: Hohn Wiley & sons (1990)
  29. Alfred Grill, Cold Plasma in Materials Fabrication, IEEE press Inc., New York, p154, (1989)

Cited by

  1. Atmospheric Pressure Plasma vol.6, pp.S1, 2009, https://doi.org/10.1002/ppap.200931111
  2. Effects of plasma treatment on the peel strength of Ni on polyimide vol.8, pp.2, 2012, https://doi.org/10.1007/s13391-012-1075-5