DOI QR코드

DOI QR Code

저압 분무열분해법에 의해 합성된 나노 크기의 코발트 산화물 입자의 특성

The Characteristics of Nano-sized Cobalt Oxide Particles Prepared by Low Pressure Spray Pyrolysis

  • Ju, Seo-Hee (Department of Chemical Engineering, Konkuk University) ;
  • Kim, Do-Youp (Department of Chemical Engineering, Konkuk University) ;
  • Kang, Yun-Chan (Department of Chemical Engineering, Konkuk University)
  • 발행 : 2006.09.27

초록

Nano-sized cobalt oxide powders were prepared by low pressure spray pyrolysis process. The precursor powders obtained by low pressure spray pyrolysis process from the spray solution with ethylene glycol had several microns size and hollow structure. The precursor powders obtained from the spray solution with optimum concentration of ethylene glycol formed the nano-sized cobalt oxide powders with regular morphology after post-treatment without milling process. On the other hand, the cobalt oxide powders obtained from the spray solution without ethylene glycol had submicron size and spherical shape before and after posttreatment. The mean size of the cobalt oxide powders formed from the spray solution with concentration of ethylene glycol of 0.7M was 180 nm after post-treatment at temperature of $800^{\circ}C$. The mean size of the powders could be controlled from several tens nanometer to micron sizes by changing the post-treatment temperatures in the preparation of cobalt oxide powders by low pressure spray pyrolysis process.

키워드

참고문헌

  1. E. M. Logothetis, K. Park, A. H. Meitzler and K. R. Laud, Appl. Phys. Lett., 26, 209 (1975) https://doi.org/10.1063/1.88118
  2. H. Kim, D. W. Park, H. C. Woo and J. S. Chung, Appl. Catal. B, 19, 233 (1998) https://doi.org/10.1016/S0926-3373(98)00074-5
  3. E. Antolini, Mater. Res. Bull., 32, 9 (1997) https://doi.org/10.1016/S0025-5408(96)00166-3
  4. W. Estrada, M. C. A. Fantini, S. C. de Castro, C. N. Polo da Fonseca and A. Gorenstein, J. Appl. Phys., 74, 5835 (1993) https://doi.org/10.1063/1.354203
  5. Y. Jiang, Y. Wu, B. Xie, Y. Xie and Y. Qian, Mater. Chem. Phys., 74, 234 (2002) https://doi.org/10.1016/S0254-0584(01)00463-1
  6. G. Furlanetto and L. Formaro, J. Colloid Interf. Sci., 170, 169 (1995) https://doi.org/10.1006/jcis.1995.1085
  7. Z. Yuan, F. Huang, C. Feng, J. Sun and Y. Zhou, Mater. Chem. Phys., 79, 1 (2003) https://doi.org/10.1016/S0254-0584(02)00442-X
  8. T. Nakamura and A. Kajiyama, Solid State lonics, 123, 95 (1999) https://doi.org/10.1016/S0167-2738(99)00114-9
  9. H. Yang, Y. Hu, X. Zhang and G. Qiu, Mater. Lett., 58, 387 (2004) https://doi.org/10.1016/S0167-577X(03)00507-X
  10. J. Jiu, Y. Ge, X. Li and L. Nie, Mater. Lett., 54, 260 (2002) https://doi.org/10.1016/S0167-577X(01)00573-0
  11. Y. C. Kang and S. B. Park, J. Mater. Sci. Lett., 16, 131 (1997) https://doi.org/10.1023/A:1018594027311
  12. B. Xia, I. W. Lenggoro and K. Okuyama, Adv. Mater., 13, 1744 (2001) https://doi.org/10.1002/1521-4095(200112)13:23<1744::AID-ADMA1744>3.0.CO;2-Z
  13. H. S. Kang, J. R. Sohn, Y. C. Kang, K. Y. Jung and S. B. Park, J. Alloys & Compd., 398, 240 (2005) https://doi.org/10.1016/j.jallcom.2005.02.009
  14. J. R. Sohn, Y. C. Kang and H. D. Park, Jpn. J. Appl. Phys., 41, 3006 (2002) https://doi.org/10.1143/JJAP.41.3006
  15. Y. C. Kang and S. B. Park, J. Aerosol Sci., 26, 1131 (1995) https://doi.org/10.1016/0021-8502(95)00037-D