Abstract
This research was conducted to design and develop a wired monitoring system for judging if sick or dead layers (SDL) exist in multi-tier layers battery (MLB) by machine vision, and to analyze its performance. In this study, 20 Brown Leghorn (Hi-Brown) layers aged 37 weeks old, were used as the experimental animals. The intensity of concern paid by layers on feed was over 90% during 5 minutes and 30 seconds after providing feed, and normal layers (NL) had been standing to take feed for that period. Therefore, in this study, the optimal judging time was set by this test result. The wired monitoring system developed was consisted of a driving device for carrying machine vision systems, a control program, a RS232 to RS485 convertor, an automatic positioning system, and an image capture system. An image processing algorithm was developed to find SDL in MLB by the processes of binary processing, erosion, expansion, labeling, and reckoning central coordinate of the captured images. The optimal velocity for driving unit was set up as 0.13 m/s by the test results for wired monitoring system, and the proximity switch was controlled not to be operated for 1.0 second after first image captured. The wired monitoring system developed was tested to evaluate the remote monitoring performance at lab-scale laying hen house. Results showed that its judgement success.ate on normal cage (without SDL) was 87% and that on abnormal cage (with SDL) was 90%, respectively. Therefore, it would be concluded that the wired monitoring system developed in this study was well suited to the purpose of this study.