Real-Time Face Detection and Tracking Using the AdaBoost Algorithm

AdaBoost 알고리즘을 이용한 실시간 얼굴 검출 및 추적

  • 이우주 (전남대학교 대학원 컴퓨터정보통신공학과) ;
  • 김진철 (전남대학교 대학원 컴퓨터정보통신공학과) ;
  • 이배호 (전남대학교 전자컴퓨터공학부)
  • Published : 2006.10.30

Abstract

In this paper, we propose a real-lime face detection and tracking algorithm using AdaBoost(Adaptive Boosting) algorithm. The proposed algorithm consists of two levels such as the face detection and the face tracking. First, the face detection used the eight-wavelet feature models which ate very simple. Each feature model applied to variable size and position, and then create initial feature set. The intial feature set and the training images which were consisted of face images, non-face images used the AdaBoost algorithm. The basic principal of the AdaBoost algorithm is to create final strong classifier joining linearly weak classifiers. In the training of the AdaBoost algorithm, we propose SAT(Summed-Area Table) method. Face tracking becomes accomplished at real-time using the position information and the size information of detected face, and it is extended view region dynamically using the fan-Tilt camera. We are setting to move center of the detected face to center of the Image. The experiment results were amply satisfied with the computational efficiency and the detection rates. In real-time application using Pan-Tilt camera, the detecter runs at about 12 frames per second.

본 논문은 AdaBoost(Adaptive Boosting)알고리즘을 이용한 실시간 얼굴 검출 및 추적에 패한 기법을 제안한다. 얼굴 검출은 8종류의 간단한 웨이블릿 특징 모형을 이용한다. 각각의 특징들은 $20{\times}20$의 훈련 영상에서 다양한 크기와 위치로 배치되어 초기의 특징 집합을 구성한다. 초기의 특징 집합과 훈련 영상은 AdaBoost알고리즘의 입력으로 사용된다. AdaBoost알고리즘의 기본원리는 약한 분류기를 선형적으로 결합하여 최종적으로는 계층적 구조를 갖는 강한 분류기론 생성하는 것이다. 본 논문에서는 AdaBoost알고리즘에서 훈련 영상과 초기의 특징 집합 간에 이루어지는 반복적 계산량을 줄이기 위해 SAT(Summed-Area Table) 기법을 이용하였다. 얼굴 추적은 Pan-Tilt카메라를 통해 동적으로 가시 영역을 확장해 가면서 검출된 영역의 위치와 크기정보를 이용하여 실시간으로 이루어진다. 검출된 얼굴 영역의 중심을 전체 영상의 중심으로 이동하는 방법을 사용하였다. 실험결과 92.5%의 얼굴 검출율과 평균 12프레임의 얼굴 추적속도를 얻었다.

Keywords