References
- M. Akhavan-Malayeri, On commutator length of certain classes of solvable groups, Internat. J. Algebra Comput. 15 (2005), no. 1, 143-147 https://doi.org/10.1142/S0218196705002141
- M. Akhavan-Malayeri, Commutator length and square length of the wreath product of a free group by the infinite cyclic group, Houston J. Math. 27 (2001), no. 4, 753-756
- M. Akhavan-Malayeri and A, Rhemtulla, Commutator length of abelian-by-nilpotent groups, Glasg. Math. J. 40 (1998), no. 1, 117-121 https://doi.org/10.1017/S0017089500032407
- Kh. S. Allambergenov and V.A. Romankov, Products of commutators in groups, Dokl. Akad. Nauk. UzSSR. (1984), no. 4, 14-15(Russian)
- C. Bavard and G. Meigniez, Commutateurs dans les groupes metabeliens, Indag. Mathem. (N.S.) 3 (1992), no. 2, 129-135 https://doi.org/10.1016/0019-3577(92)90001-2
- B. Hartley, Subgroup of finite index in profinite groups, Math. Z. 168 (1979), no. 1, 71-76 https://doi.org/10.1007/BF01214436
- A. Rhemtulla, Commutators of certain finitely generated soluble groups, Canad. J. Math. 21 (1969), 1160-1164 https://doi.org/10.4153/CJM-1969-126-4
- D. Segal, Closed subgroups of profinite groups, Proc. London Math. Soc. (3) 81 (2000), no. 1, 29-54
- P. Stroud, Ph. D. Thesis, Cambridge, 19
Cited by
- On Solvable Groups of Arbitrary Derived Length and Small Commutator Length vol.2011, 2011, https://doi.org/10.1155/2011/245324
- Palindromic Width of Finitely Generated Solvable Groups vol.43, pp.11, 2015, https://doi.org/10.1080/00927872.2014.952738
- Palindromic width of wreath products vol.471, 2017, https://doi.org/10.1016/j.jalgebra.2016.09.015