References
-
C. Baak, S. Hong, and M. Kim, Generalized quadratic mappings of
$\gamma$ -type in several variables, J. Math. Anal. Appl. 310 (2005), 116-127 https://doi.org/10.1016/j.jmaa.2005.01.056 - P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86 https://doi.org/10.1007/BF02192660
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64 https://doi.org/10.1007/BF02941618
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436 https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224
- J. Kang, C. Lee and Y. Lee, A note on the Hyers-Ulam-Rassias stability of a quadratic equation, Bull. Korean Math. Soc. 41 (2004), 541-557 https://doi.org/10.4134/BKMS.2004.41.3.541
- C. Park, On the Hyers-Ulam-Rassias stability of generalized quadratic mappings in Banach modules, J. Math. Anal. Appl. 291 (2004), 214-223 https://doi.org/10.1016/j.jmaa.2003.10.027
- C. Park, Generalized quadratic mappings in several variables, Nonlinear Anal-ysis-TMA 57 (2004), 713-722 https://doi.org/10.1016/j.na.2004.03.013
-
C. Park, J. Park and J. Shin, Hyers-Ulam-Rassias stability of quadratic functional equations in Banach modules over a
$C^{*}$ -algebra, Chinese Ann. Math. Series B 24 (2003), 261-266 https://doi.org/10.1142/S0252959903000244 - Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300
- Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. abes-Bolyai XLIII (1998), no. 3, 89-124
- Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378 https://doi.org/10.1006/jmaa.2000.6788
- Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284 https://doi.org/10.1006/jmaa.2000.7046
- Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130 https://doi.org/10.1023/A:1006499223572
- Th. M. Rassias and P. Semrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338 https://doi.org/10.1006/jmaa.1993.1070
- Th. M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253 https://doi.org/10.1006/jmaa.1998.6129
- F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 https://doi.org/10.1007/BF02924890
- T. Trif, Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 40 (2003), 253-267 https://doi.org/10.4134/BKMS.2003.40.2.253
- S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960
Cited by
- Stability of a Bi-Additive Functional Equation in Banach Modules Over aC⋆-Algebra vol.2012, 2012, https://doi.org/10.1155/2012/835893
- A FIXED POINT APPROACH TO THE CAUCHY-RASSIAS STABILITY OF GENERAL JENSEN TYPE QUADRATIC-QUADRATIC MAPPINGS vol.47, pp.5, 2010, https://doi.org/10.4134/BKMS.2010.47.5.987