나노 스케일 벌크 MOSFET을 위한 새로운 RF 엠피리컬 비선형 모델링

New RF Empirical Nonlinear Modeling for Nano-Scale Bulk MOSFET

  • 이성현 (한국외국어대학교 전자정보공학부)
  • Lee, Seong-Hearn (School of Electronics and Information Engineering, Hankuk University of Foreign Studies)
  • 발행 : 2006.12.25

초록

나노 스케일 벌크 MOSFET의 RF 비선형 특성을 넓은 bias영역에 걸쳐 정확히 예측하기 위하여 내된 비선형 요소들을 가진 엠피리컬 비선형 모델이 새롭게 구축되었다. 먼저, 나노 스케일 벌크 MOSFET에 적합한 파라미터 추출방법을 사용하여 측정된 S-파라미터로부터 bias 종속 내부 파라미터 곡선을 추출하였다. 그 후에 비선형 캐패시턴스 및 전류원 방정식들은 추출된 bias 종속 곡선들과 3차원 fitting함으로서 엠피리컬하게 구하여졌다. 이와 같이 모델된 S-파라미터는 60nm MOSFET의 측정치와 20GHz 까지 아주 잘 일치하였으며, 이는 엠피리컬 나노 MOSFET 모델의 정확도를 증명한다

An empirical nonlinear model with intrinsic nonlinear elements has been newly developed to predict the RF nonlinear characteristics of nano-scale bulk MOSFET accurately over the wide bias range. Using an extraction method suitable for nano-scale MOSFET, the bias-dependent data of intrinsic model parameters have been accurately obtained from measured S-parameters. The intrinsic nonlinear capacitance and drain current equations have been empirically obtained through 3-dimensional curve-fitting to their bias-dependent curves. The modeled S-parameters of 60nm MOSFET have good agreements with measured ones up to 20GHz in the wide bias range, verifying the accuracy of the nano-scale MOSFET model.

키워드

참고문헌

  1. http://www.tsmc.com/
  2. http://www.umc.com
  3. C.H. Chen et al., 'A 90 nm CMOS MS/RF based foundry SOC technology comprising superb 185 GHz $f_T$ RFMOS and versatile, high-Q passive components for cost/performance optimization,' Tech. Dig. Int. Electron Devices Meet., Dec. 2003 https://doi.org/10.1109/IEDM.2003.1269161
  4. S.-F. Huang et al., 'High performance 50 nm CMOS devices for microprocessor and embedded processor core applications,' Tech. Dig. Int. Electron Devices Meet., Dec. 2001 https://doi.org/10.1109/IEDM.2001.979474
  5. B. Yu et al.,'15 nm gate length planar CMOS transistor,' Tech. Dig. Int. Electron Devices Meet., pp. 937-939, Dec. 2001
  6. BSIM3v3 Manual, Department of Electrical Engineering and Computer Science, University of California, Berkeley, 1995
  7. BSIM4 Manual, Department of Electrical Engineering and Computer Science, University of California, Berkeley, 2000
  8. R. van Langevelde and F. M. Klaassen, 'Accurate drain conductance modeling for distortion analysis in MOSFET,' Tech. Dig. Int. Electron Devices Meet., pp. 313-316, Dec. 1997 https://doi.org/10.1109/IEDM.1997.650389
  9. J. M. Collantes et al., 'A new large-signal model based on pulse measurement techniques for RF power MOSFET,' IEEE MTT-S Int. Microwave Symp, Dig., pp. 1553-1556, June 1995 https://doi.org/10.1109/MWSYM.1995.406271
  10. I. Angelov, H. Zirath, and N. Rorsman, 'A new empirical model for HEMT and MESFET devices,' IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2258-2268, Dec. 1992 https://doi.org/10.1109/22.179888
  11. Y.-J. Chan, C.-H. Huang, C.-C. Weng, and B.-K. Liew, 'Characteristics of deep-submicrometer MOSFET and its empirical nonlinear RF model,' IEEE Transaction on Microwave Theory and Techniques, vol. 46, pp. 611-615, May 1998 https://doi.org/10.1109/22.668671
  12. S. Lee, 'Empirical Nonlinear Modeling for RF MOSFETs,' International Journal of RF and Microwave Computer-Aided Engineering, vol. 14, pp. 182- 189, March 2004 https://doi.org/10.1002/mmce.v14:2
  13. S. Lee, 'Effects of pad interconnection parasitics on forword transit time in HBTs', IEEE Trans. Electron Devices, Vol 46, no 2, pp.275-278, Feb 1999 https://doi.org/10.1109/16.740889
  14. S. Lee, 'An accurate RF Extraction Method for Resistances and Inductances of sub-0.1um CMOS Transistors', Electronics Letters, Vol 41, no 24, pp.1325-1327, Nov. 2005 https://doi.org/10.1049/el:20053024
  15. S. Lee, 'Direct extraction technique for a small-signal MOSFET equivalent circuit with substrate parameters,' Microwave and Optical Technology Lett., vol. 39, pp. 344-347, Nov. 2003 https://doi.org/10.1002/mop.11210
  16. Serenade version 8.7 User's Guide, Ansoft Corporation, 2001