Analysis of A New Crossbar Embedded Structure for Improved Attenuation Characteristics on the Various Lossy Media

다양한 손실매질내의 손실특성 개선을 위한 새로운 크로스바 구조의 해석

  • Kim, Yoon-Suk (Electronics Engineering, Korea Air Force Academy)
  • 김윤석 (공군사관학교 전자공학과)
  • Published : 2006.12.25

Abstract

In this paper, we propose a new cross bar embedded structure for improvement of attenuation characteristics along the different lossy media. A general characterization procedure based on the extraction of the characteristic impedance and propagation constant for analyzing a single MIS(Metal-Insulator-Semiconductor) transmission line used and an analysis for a new substrate shielding MIS structure consisting of grounded crossbars at the interface between Si and Sio2 layer using the Finite-Difference Time-Domain(FDTD) technique is used. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded cross bar lines over time-domain signal has been examined. The extracted, distributed frequency-dependent transmission line parameters as well as the line voltages and currents, and also corresponding equivalent circuit parameters have been examined as function of frequency. It is shown that the quality factor of the transmission line can be improved without significant changes in the characteristic impedance and effective dielectric constant.

본 논문에서는 일반적인 손실매질의 다층구조로 이루어진 마이크로 스트립선로의 손실특성의 개선을 위한 새로운 구조를 제안한다. MIS(도체-부도체-반도체) 구조로 된 전송선로를 해석하기 위하여 기본적으로 특성임피던스와 전파상수의 추출에 기초한 일반적인 특성화 절차가 사용되고, Si와 SiO2층 사이에 0전위를 가진 도체를 일정한 간격의 주기적인 배열로 고안된 새로운 모델의 MIS구조에 대한 유한차분법을 이용한 해석방법이 사용된다. 특히 전송선로에 대한 유전체의 영향을 줄이기 위하여 0전위를 가진 주기적인 결합의 도체로 이루어진 구조가 시간영역의 신호를 통해 시험된다. 다양한 손실률을 가진 불완전 유전체에 따른 전압 및 전류의 크기뿐만 아니라 주파수 의존적인 추출된 전송선로 파라미터와 등가회로 파라미터가 주파수 함수로서 나타내진다. 특히 본 논문에서 제안한 새로운 구조의 불완전 유전체에 대한 전송선로 파라미터가 주파수 함수로 구해진다.

Keywords

References

  1. H. Guckel and I. Palocz, 'A parallel-plate waveguide approach to micro-miniaturized, lanar transmission lines for integrated circuits,' IEEE Trans. MTT, vol. 15, pp. 468-476, Aug. 1967 https://doi.org/10.1109/TMTT.1967.1126505
  2. H. Hasegawa and H. Yanai, 'Properties of microstrip line on Si-SiO2 system,' IEEE Trans. MTT, vol. 19, pp. 869-881, Nov. 1971 https://doi.org/10.1109/TMTT.1971.1127658
  3. V. Tripathi and R. Bucolo, 'A simple network analog approach for the quais-static characteristics of general lossy, anisotropic, layered structures,' IEEE Trans. MTT, vol. 33, pp. 1458-1464, Dec. 1985 https://doi.org/10.1109/TMTT.1985.1133240
  4. M. Abushaaban and S. Scanlan, 'Modal circuit decomposition of lossy multiconductor transmission lines,' IEEE Trans. MTT, vol. 44, pp. 1046-1057, July 1996 https://doi.org/10.1109/22.508637
  5. G. Ghione and G. Vecchi, 'Modeling of multiconductor buses and analysis of crosstalk, propagation delay, and pulse distortion in high-speed GaAs logic circuits,' IEEE Trans. MTT, vol. 37, pp. 445-456, Mar. 1989 https://doi.org/10.1109/22.21614
  6. A. Goel and Y. Huang, 'Modeling of crosstalk among the GaAs-based VLSI interconnections,' Proceedings of the IEE, vol. 136, pp. 361-368, Dec. 1989 https://doi.org/10.1049/ip-g-2.1989.0060
  7. J. Gilb and C. Balanis, 'MIS slow-wave structure over a wide range of parameters,' IEEE Trans. MTT, vol. 40, pp. 2148-2154, Dec. 1992 https://doi.org/10.1109/22.179875
  8. C. Chan and R. Mittra, 'The propagation characteristics of signal lines embedded in a multilayered structure in the presence of a periodically perforated ground plane,' IEEE Trans. MTT, vol. 36, pp. 968-975, June 1988 https://doi.org/10.1109/22.3621
  9. Y. Kim, 'Analysis of a transmission line on Si-based lossy structure using Finite-Difference Time-Domain (FDTD) method,' Journal of KICS, vol. 25, pp. 1527-1533, Sep. 2000
  10. G. Plaza and F. Medina, 'Quasi-TM MoL/MoM approach for computing the transmission-line parameters of lossy lines,' IEEE Trans. MTT, vol 54, pp. 198-209, Jan. 2006 https://doi.org/10.1109/TMTT.2005.860507