Improvement of Spatial Resolution in Nano-Stereolithography Using Radical Quencher

  • Park, Sang-Hu (Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology, Science Town) ;
  • Lim, Tae-Woo (Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology, Science Town) ;
  • Yang, Dong-Yol (Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology, Science Town) ;
  • Kim, Ran-Hee (Department of Polymer Science and Engineering, Hannam University) ;
  • Lee, Kwang-Sup (Department of Polymer Science and Engineering, Hannam University)
  • Published : 2006.10.31

Abstract

The improvement of spatial resolution is a fundamental issue in the two-photon, polymerization-based, laser writing. In this study, a voxel tuning method using a radical quencher was proposed to increase the resolution, and the quenching effect according to the amount of radical quencher was experimentally investigated. Employing the proposed method, the lateral resolution of the line patterns was improved almost to 100 nm. However, a shortcoming of the quenching effect was the low mechanical strength of polymerized structures due to their short chain lengths. Nano-indentation tests were conducted to evaluate quantitatively the relationship between mechanical strength and the mixture ratio of the radical quencher into the resins. The elastic modulus was dramatically reduced from an average value of 3.015 to 2.078 GPa when 5 wt% of radical quencher was mixed into the resin. Three-dimensional woodpile structures were fabricated to compare the strength between the resin containing radical quencher and the original resin.

Keywords

References

  1. Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed., 37, 550 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  2. S. Y. Chou, C. Keimel, and J. Gu, Nature, 417, 835 (2002) https://doi.org/10.1038/nature00792
  3. S. Maruo and S. Kawata, J. Microelectromech. Syst., 7, 411 (1998) https://doi.org/10.1109/84.735349
  4. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, Nature, 412, 697 (2001) https://doi.org/10.1038/35089130
  5. H. B. Sun, T. Tanaka, and S. Kawata, Appl. Phys. Lett., 80, 3673 (2002) https://doi.org/10.1063/1.1478128
  6. J. Serbin, A. Egbert, A. Ostendorf, and B. N. Chichkov, Opt. Lett., 28, 301 (2003) https://doi.org/10.1364/OL.28.000301
  7. S. H. Park, T. W. Lim, D. Y. Yang, H. J. Kong, R. H. Kim, and K.-S. Lee, Bull. Korean Chem. Soc., 25, 1119 (2004) https://doi.org/10.5012/bkcs.2004.25.8.1119
  8. S. H. Park, T. W. Lim, D. Y. Yang, H. J. Kong, and K.-S. Lee, Polymer(Korea), 28, 305 (2004)
  9. S. H. Park, T. W. Lim, D. Y. Yang, H. J. Kong, and K.-S. Lee, Macromol. Res., 14, 245 (2006) https://doi.org/10.1007/BF03218517
  10. S. H. Park, S. H. Lee, D. Y. Yang, H. J. Kong, and K.-S. Lee, Appl. Phys. Lett., 87, 154108 (2005) https://doi.org/10.1063/1.2103393
  11. K.-S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, Polym. Adv. Technol., 17, 72, (2006) https://doi.org/10.1002/pat.664
  12. T. W. Lim, S. H. Park, D. Y. Yang, and K.-S. Lee, Polymer(Korea), 29, 418 (2005) https://doi.org/10.1016/0032-3861(88)90358-8
  13. T. W. Lim, S. H. Park, D. Y. Yang, S. W. Yi, H. J. Kong, and K.-S. Lee, J. Mech. Sci. Technol., 19, 1989 (2005)
  14. S. H. Park, T. W. Lim, D. Y. Yang, S. W. Yi, H. J. Kong, and K.-S. Lee, J. Nonlinear Opt. Phys. Mater., 14, 331 (2005) https://doi.org/10.1142/S0218863505002773
  15. S. H. Park, T. W. Lim, D. Y. Yang, S. W. Yi, and H. J. Kong, Sens. Mater., 17, 65 (2005)
  16. H. K. Yang and K.-S. Lee, unpublished results 2006
  17. C. D. Cook, J. Org. Chem., 18, 261 (1953) https://doi.org/10.1021/jo01131a005
  18. O. Breda, M. R. Ganapathi, S. Naumov, W. Naumann, and R. Hermann, J. Phys. Chem. A, 105, 3757 (2001) https://doi.org/10.1021/jp002701o
  19. V. K. Varadan, et al., Microstereolithography and other fabrication techniques for 3D MEMS, John Wiley & Sons, Chichester, 2001
  20. S. C. Kim, et al., Polymer Engineering I, Heechoongkak, Seoul, 1994