Controlled Release Behavior of Bioactive Molecules from Photo-Reactive Hyaluronic Acid-Alginate Scaffolds

  • Nam, Hye-Sung (Dept. of Polymer Science and Engineering, SungKyunKwan University) ;
  • An, Jeong-Ho (Dept. of Polymer Science and Engineering, SungKyunKwan University) ;
  • Chung, Dong-June (Dept. of Polymer Science and Engineering, SungKyunKwan University) ;
  • Kim, Ji-Heung (Dept. of Chemical Engineering, SungKyunKwan University) ;
  • Chung, Chong-Pyoung (Intellectual Biointerface Engineering Center, Seoul National University)
  • Published : 2006.10.31

Abstract

There are three important components in tissue engineering: the cells, signaling factors (cytokines and growth factors), and scaffolds. To obtain finely engineered tissue, all three components should perform their individual functions and be fully integrated with each other. For the past few years, we have studied the characteristics of photodimerizable HA (CHA)/alginate (CA) composite materials. CHA/CA complex hydrogels, which were irradiated under UV light and, then treated with calcium ions, were found to have good biocompatibility, mechanical properties and water resistance for implantable tissue scaffolds. In this study, we introduced a cell growth factor (basic fibroblast growth factor; bFGF) into the CHA/CA scaffolds and studied its release behavior. We also introduced tetracycline hydrochloride and flurbiprofen into the same scaffolds as model activation factors and evaluated their release behaviors from the scaffolds. The drug release rate from the materials was influenced by various parameters, such as the degree of crosslinking, the cross linker type, the physico-chemical properties of the drug, and the amount of the drug in the polymer. The results indicated that the negatively charged CHA/CA composite materials showed sustained release behavior and that HA has a particularly strong negative charge, making it attractive toward tetracycline hydrochloride and bFGF, but repulsive toward flurbiprofen.

Keywords

References

  1. R. Locklin and R. Oreffo, Cell Biol. Int., 23, 185 (1999) https://doi.org/10.1006/cbir.1998.0338
  2. I. Martin, G. Vunjak-Novakovic, J. Yang, R. Langer, and L. E. Freed, Exp. Cell Res., 253, 681 (1999) https://doi.org/10.1006/excr.1999.4708
  3. W. J. Landis, K. J. Hodgens, J. Arena, M. J. Song, and B. F. McEwen, Microsc. Res. Techniq., 33, 192 (1996) https://doi.org/10.1002/(SICI)1097-0029(19960201)33:2<192::AID-JEMT9>3.0.CO;2-V
  4. S. Frenkel, M. Herskowitz, and I. Singh, Acta Anat.(Basel), 143, 265 (1992)
  5. S. Pitaru, S. Kotev-Emeth, D. Noff, S. Kaffuler, and N. Savion, J. Bone Miner. Res., 8, 929 (1993)
  6. R. K. Globus, J. Plouet, and D. Gospodarowicz, Endocrinology, 124, 1530 (1989)
  7. P. V. Hauschka, A. E. Mavrakos, M. D. Iafrati, S. E. Doleman, and M. Klagsbrun, J. Biol. Chem., 261, 665 (1986)
  8. G. R. Mundy, B. Boyce, D. Hughes, K. Wright, L. Bonewald, S. Dallas, S. Harris, N. Ghash-choudhury, C. Chen, C. Dunstan, E. Izbicka, and T. Yoneda, Bone 17, 71S (1995) https://doi.org/10.1016/8756-3282(95)00182-D
  9. H. Nagai, R. Tsukuda, and H. Mayahara, Bone, 16, 367 (1995) https://doi.org/10.1016/8756-3282(94)00049-2
  10. P. B. Van Wachem, J. A. Plantinga, M. J. Wissink, R. Beernink, A. A. Poot, G. H. Engbers, T. Beugeling, W. G. Van Aken, J. Feijen, and M. J. Van Luyn, J. Biomed. Mater. Res., 55, 368 (2001) https://doi.org/10.1002/1097-4636(20010605)55:3<368::AID-JBM1025>3.0.CO;2-5
  11. H. Kawaguchi, K. Nakamura, Y. Tabata, Y. Ikada, I. Aoyama, J. Anzai, T. Nakamura, Y. Hiyama, and M. Tamura, J. Clin. Endo. Meta., 86, 875 (2001) https://doi.org/10.1210/jc.86.2.875
  12. Y. Tabata, A. Nagano, M. Muniruzzaman, and Y. Ikada, Biomaterials, 19, 1781 (1998) https://doi.org/10.1016/S0142-9612(98)00089-1
  13. M. L. Radomsky, L. Swain, T. Aufdemorte, C. Fox, and J. Poser, Transactions of the 43rd Annual Meeting, The Orthopaedic Research Society, 9 (1997)
  14. N. E. Larsen and E. A. Balazs, Adv. Drug Deliver. Rev., 7, 279 (1991) https://doi.org/10.1016/0169-409X(91)90007-Y
  15. M. Morgelin, D. Heinegard, J. Engel, and M. Paulsson, Biophys. Chem., 50,113 (1994) https://doi.org/10.1016/0301-4622(94)85024-0
  16. D. J. Chung and T. Matsuda, J. Ind. Eng. Chem., 4, 340 (1998)
  17. F. Della Valle and A. Romeo, US Patent 5,336,767 (1994)
  18. S. Pelletier, P. Hubert, F. Lapicque, E. Payan, and E. Dellacherie, Carbohydrate Polymers, 43, 343 (2000) https://doi.org/10.1016/S0144-8617(00)00188-0
  19. K. Tomihata and Y. Ikada, Biomaterials, 18, 189 (1997) https://doi.org/10.1016/S0142-9612(96)00116-0
  20. P. Bulpitt and D. Aeschlimann, J. Biomed. Mater. Res., 47, 152 (1999) https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I
  21. S. Al-Musa, D. Abu Fara, and A. A. Badwan, J. Control. Release, 57, 223 (1999) https://doi.org/10.1016/S0168-3659(98)00096-0
  22. P. Eiselt, J. Yeh, R. K. Latvala, L. D. Shea, and D. J. Mooney, Biomaterials, 21, 1921 (2000) https://doi.org/10.1016/S0142-9612(00)00033-8
  23. C. K. Cuo and P. X. Ma, Biomaterials, 22, 511 (2001) https://doi.org/10.1016/S0142-9612(00)00201-5
  24. H. W. Kang, Y. Tabata, and Y. Ikada, Biomaterials, 20, 1339 (1999) https://doi.org/10.1016/S0142-9612(99)00036-8
  25. H. S. Nam, J. H. Kim, J. H. An, and D. J. Chung, Polymer (Korea), 25, 476 (2001)
  26. Y. J. Park, Y. M. Lee, S. N. Park, J. Y. Lee, Y. Ku, C. P. Chung, and S. J. Lee, J. Biomed. Mater. Res., 51, 391 (2000) https://doi.org/10.1002/1097-4636(20000905)51:3<391::AID-JBM13>3.0.CO;2-9
  27. C. S. Cho, J. H. Ha, S. H. Kim, S. Y. Han, I. K. Kwon, and Y. K. Sung, J. Appl. Polym. Sci., 60, 161 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960411)60:2<161::AID-APP3>3.0.CO;2-Q
  28. F. Gamisans, F. Lacoulonche, A. Chauvet, M. Espina, M. L. Garcia, and EA. Egea, Intern. J Pharmaceu., 179, 37 (1999) https://doi.org/10.1016/S0378-5173(98)00381-0
  29. S. J. Kang, H. S. Nam, J. H. An, J. Y. Bae, and D. J. Chung, Biomater. Res., 5, 10 (2002)