DOI QR코드

DOI QR Code

Expression of pqq Genes from Serratia marcescens W1 in Escherichia coli Inhibits the Growth of Phytopathogenic Fungi

  • Kim, Yong-Hwan (National Institute of Agricultural Biotechnology, RDA) ;
  • Kim, Chul-Hong (Environmental-Friendly Agriculture Research Center, Chonnam National University) ;
  • Han, Song-Hee (Environmental-Friendly Agriculture Research Center, Chonnam National University) ;
  • Kang, Beom-Ryong (Environmental-Friendly Agriculture Research Center, Chonnam National University) ;
  • Cho, Song-Mi (Environmental-Friendly Agriculture Research Center, Chonnam National University) ;
  • Lee, Myung-Chul (National Institute of Agricultural Biotechnology, RDA) ;
  • Kim, Young-Cheol (Environmental-Friendly Agriculture Research Center, Chonnam National University)
  • Published : 2006.12.01

Abstract

Serratia marcescens W1, isolated from cucumber-cultivated soil in Suwon, Korea, evidenced profound antifungal activity and produced the extracellular hydrolytic enzymes, chitinase and protease. In order to isolate the antifungal genes from S. marcescens W1, a cosmid genomic library was constructed and expressed in Escherichia coli. Transformants exhibiting chitinase and protease expression were selected, as well as those transformants evidencing antifungal effects against the rice blast fungus, Magnaporthe grisea, and the cucumber leaf spot fungus, Cercospora citrullina. Cosmid clones expressing chitinase or protease exerted no inhibitory effects against the growth of fungal pathogens. However, two cosmid clones evidencing profound antifungal activities were selected for further characterization. An 8.2 kb HindIII fragment from these clones conditioned the expression of antagonistic activity, and harbored seven predicted complete open reading frames(ORFs) and two incomplete ORFs. The deduced amino acid sequences indicated that six ORFs were highly homologous with genes from S. marcescens generating pyrroloquinoline quinone(PQQ). Only subclones harboring the full set of pqq genes were shown to solubilize insoluble phosphate and inhibit fungal pathogen growth. The results of this study indicate that the functional expression of the pqq genes of S. marcescens W1 in E. coli may be involved in antifungal activity, via as-yet unknown mechanisms.

Keywords

References

  1. Adachi, H. and Tsujimoto, M. 1995. Cloning and expression of dipeptidase from Acinetobacter calcoaceticus ATCC23055. J. Biochem. 118:555-561 https://doi.org/10.1093/oxfordjournals.jbchem.a124945
  2. Altomare, C., Norvell, W. A., Bjorkman, T. and Harman, G. E. 1999. Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Fifai 1295-22. Appl. Environ. Microbiol. 65:2926-2933
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1989. Current protocols in molecular biology. New York: John Wiley and Sons
  4. Bloemberg, B. G. and Lugtenberg, B. J. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4:343-350 https://doi.org/10.1016/S1369-5266(00)00183-7
  5. Buchenauer, H. 1998. Biological control of soil-borne diseases by rhizobacteria. Z. Pflanzenkrankh Pflanzenschutz 105:329-348
  6. Chin-A-Woeng, T. F. C., Bloemberg, G. V., Mulders, I. H. M., Dekkers, L. C. and Lugtenberg, B. J. J. 2000. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol. Plant-Microbe Interact. 13:1340-1345 https://doi.org/10.1094/MPMI.2000.13.12.1340
  7. Dahler, G. S., Barras, F. and Keen, N. T. 1990. Cloning of genes encoding extracellular metalloproteases from Erwinia chrysanthemi EC16. J. Bacteriol. 172:5803-5815 https://doi.org/10.1128/jb.172.10.5803-5815.1990
  8. Dunlap, C., Moenne-Loccoz, Y., McCarthy, J., Higgins, P., Powell, J., Dowling, D. N. and O'Gara, F. 1998. Combining proteolytic and phloroglucinol producing bacteria for improved biocontrol of Pythium mediated damping off of sugar beet. Plant Pathol. 47:299-307 https://doi.org/10.1046/j.1365-3059.1998.00233.x
  9. Flyg, C. and Xanthopoulos, K. G. 1983. Insect pathogenic properties of Serratia marcescens. Passive and active resistance to insect immunity studied with protease-deficient and phage-resistant mutants. J. Gen. Microbiol. 129:453-464
  10. Goosen, N., Huinen, R. G. M. and Putte, P. 1992. A 24-aminoacid polypeptide is essential for the biosynthesis of the coenzyme pyrroloquinoline quinone. J. Bacteriol. 174:1426-1427 https://doi.org/10.1128/jb.174.4.1426-1427.1992
  11. Goldstein, A. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol. Agric. Hortic. 12:185-193 https://doi.org/10.1080/01448765.1995.9754736
  12. Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41:117-153 https://doi.org/10.1146/annurev.phyto.41.052002.095656
  13. Han, S. H., Lee, S. J., Moon, J. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19:924-930 https://doi.org/10.1094/MPMI-19-0924
  14. Kaur, R., Macleod, J., Foley, W. and Nayudu, M. 2006. Gluconic acid: An antifungal agent produced by Pseudomonas species in biological control of take all. Phytochemistry 67:595-604 https://doi.org/10.1016/j.phytochem.2005.12.011
  15. Kim, C. H., Han, S. H., Kim, K. Y., Cho, B. H., Kim, Y. H., Koo, B. S. and Kim, Y. C. 2003. Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Curr. Microbiol. 47: 457-461
  16. Kim, K. Y., Hwang, B, H., Kim, Y. W., Kim, H. J., Park, K. H., Kim, Y. C. and Seong, K. Y. 2002. Organic acid production and phosphate solubilization by Enterobacter intermedium 602G. Korean J. Soil Sci. Fert. 35:59-67
  17. Kim, Y. H. 1996. Isolation and characterization of antipathogenic genes of antagonistic bacterium, Serratia marcescens W1 to rice blast pathogen. Ph. D thesis. Chonnam National University
  18. Lambrecht, M., Okon, Y., Vande Broek, A. and Vanderleyden, J. 2000. Indole-3-acetic acid: A reciprocal signaling molecule in bacteria-plant interactions. Trends Microbiol. 8:298-300 https://doi.org/10.1016/S0966-842X(00)01732-7
  19. Leong, J. 1986. Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phyto-pathol. 24:187-209 https://doi.org/10.1146/annurev.py.24.090186.001155
  20. Lugtenberg, B. J. J., Dekkers, L. C. and Bloemberg, G. V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39:461-490 https://doi.org/10.1146/annurev.phyto.39.1.461
  21. Meulenberg, J. J. M., Sellink, E., Riegman, N. H. and Postma, P. W. 1992. Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol. Gen. Genet. 232:284-294
  22. Park, S. K., Lee, M-C. and Harman, G. E. 2005. The biocontrol activity of Chromobacterium sp. strain C-61 against Rhizoctonia solani depends on the productive ability of chitinase. Plant Pathol. J. 21:275-282 https://doi.org/10.5423/PPJ.2005.21.3.275
  23. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026 https://doi.org/10.1104/pp.103.026583
  24. Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  25. Stanghellini, M. E. and Miller, R. M. 1997. Biosurfactants. Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis. 81:4-12 https://doi.org/10.1094/PDIS.1997.81.1.4
  26. Van Schie, B. J., De Mooy, O. H., Linton, J. D., Van Dijken, J. P. and Kuenen, J. G. 1987. PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium, and Rhizobium species. J. Gen. Microbiol. 133:867-875
  27. Velterop, J. S., Sellink, E., Meulenberg, J. M., David, S., Bulder, I. and Postma, P. W. 1995. Synthesis of pyrroloquinolin quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J. Bacteriol. 177:5088-5098 https://doi.org/10.1128/jb.177.17.5088-5098.1995
  28. Voisard, C., Keel, C., Haas, D. and Defago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8:351-358
  29. Yamura, L. and John, L. L. 1961. Chitin media for selective isolation and culture of Actinomycetes. Phytopathology 52:318-323
  30. Watanabe, T., Kimura, K., Sumiya, T., Nikidou, N., Suzuki, K., Suzuki, M., Taiyoji, M., Ferrer, S. and Reque, M. 1997. Genetic analysis of the chitinase system of Serratia marcescens 2170. J. Bacteriol. 179:7111-7117 https://doi.org/10.1128/jb.179.22.7111-7117.1997

Cited by

  1. Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67 vol.98, pp.11, 2014, https://doi.org/10.1007/s00253-014-5610-1
  2. Characterization of the Biocontrol Activity of Pseudomonas fluorescens Strain X Reveals Novel Genes Regulated by Glucose vol.8, pp.4, 2013, https://doi.org/10.1371/journal.pone.0061808