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Attitude Dynamics Identification of Unmanned Aircraft Vehicle

Shaaban Ali Salman, Anavatti G. Sreenatha*, and Jin Young Choi

Abstract: The role of Unmanned Aircraft Vehicles (UAVs) has been increasing significantly in
both military and civilian operations. Many complex systems, such as UAVs, are difficult to
model accurately because they exhibit nonlinearity and show variations with time. Therefore, the
control system must address the issues of uncertainty, nonlinearity, and complexity. Hence,
identification of the mathematical model is an important process in controller design. In this
paper, attitude dynamics identification of UAV is investigated. Using the flight data, nonlinear
state space model for attitude dynamics of UAV is derived and verified. Real time simulation
results show that the model dynamics match experimental data.
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1. INTRODUCTION

UAVs have unmatched qualities that often make
them the only effective solution in specialized tasks
where risks to pilots are high, where beyond normal
human endurance is required, or where human
presence is not necessary. They have been used to
perform missions in hazardous environments such as
operations in nuclear power plants, exploration of
Mars, and surveillance of enemy forces in the
battlefield. Also, they are used for environmental
monitoring, weather research, agricultural support,
and mineral exploration. In general, the models for
UAVs are dynamic with multiple inputs and outputs,
and the measurements are noisy. While significant
progress has been made in identification of linear
systems over the broad spectrum of aerospace
applications, the research to identify the nonlinear
flight dynamics has been insufficient [1]. It has been
recognized that the significant improvements of
dynamic performance of current and new generation
of advanced airplanes are possible if flight system
design integrates nonlinear analysis, control, and
identification [2]. Identification of nonlinear muiti-
input multi-output vehicles is a challenging problem
and the current interest has been shifted to the issues
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of handling the nonlinear identification.

In this paper, a nonlinear mapping identification
concept [2-6] is applied to identify the unknown
parameters of attitude dynamics of UAV which is
mapped by nonlinear differential equations. While
nonlinear differential equations in a generic form can
be found using Newtonian mechanics or the Lagrange
equations of motion [7], the unknown parameters
must be identified. The present work looks at the
identification of the parameters that govern the
attitude dynamics of UAV.

The test flights to collect the data were conducted at
ADFA@UNSW, Australia.

The rest of the paper is organized as follows.
Section 2 gives description of the identification
approach. The attitude dynamics of UAV is presented
in Section 3. Section 4 presents real time simulations
using identification technique and in Section 5 some
concluding remarks are presented.

2. STATE SPACE IDENTIFICATION

The nonlinear mapping identification method
considers the system in the form

#(6)=F(x,u), t20 x(fy) = x, (1)

where x e R®is the vector of the measured states with
initial conditions x(75)=x,, #€R™ is the known
input vector, and F(x,u) denotes a continuous vector
function which is defined on R®\ {0} with F(0,0) = 0.

System (1) can be written in the matrix state space
form as

(1) = AW f(xu), 120, x(t9) = X, @

where A(¢) € R™" is the real matrix, f(x, #) denotes
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a given real analytic function, and f(e): R°xR™
— R".
The identified state space model is defined as

xm(t): Am(t)f(xmau)s 120, xm(’O):me' 3)

Matrix coefficients, 4, (f), are to be identified

from flight data.
The normalized parameter error matrix AA(r)

€ R® is defined as
AA(1) = A1) = A4, (1) 4)
The state error vector is introduced as
Ax(t) = x(t) — x,,(¢)

=AA) f(x,u) + A, (OAf(x,x,,,u),
120,Ax(ty) = Ax,.

Here, Af(x,x,,,u)= f(x,u)— f(x,,,u).
The error vector is defined as

e(t) = Ax(t) - Am (t)Af(x, xm>u) = M(t)f(xau)' (5)
An identification algorithm converges if

lim |e(r)|=0 and lim |A4()]=0.
1 —>+0c0 t—+0

Using the differential equation for the normalized
parameter error matrix as in [2-6], one has

AA(1) = —e(t) f (x,u)| K, K € R™  Ad(ty) = Ady, (6)

where K is the weighting matrix. The selection of K
affects the convergence of the identified parameters to
their real values. It is chosen by the designer to
guarantee the convergence and to attain the desired
convergence rate.

From (5) and (6), one gets

A ()= AW +e(t) f(x,0) K, 4, (1) = Apo. (7)

At a given flight condition, UAV dynamics can be
assumed as time invariant, i.e., system parameters are
constant. Hence system (2) becomes time invariant, so
A@D)=0.

Then, we have the following nonlinear equation

A () = 14K = A, 0 (550 () K, o)
Am (to) = Amo.

The unknown parameters are found by solving
nonlinear differential equation (8).

3. UAV ATTITUDE DYNAMICS

In this paper, the attitude dynamics of UAV is

considered. The aircraft attitude dynamics is mapped
by a set of three highly coupled nonlinear differential
equations [7]. Instead of using an arbitrary structure
these equations are used to get the basic structure for
identification. The equations are

L=pl, il +qr(l, -1,)—pql,,,
M =41, + pr(le = 1) +(p* =), ©
N :’;12 _p[xz +pQ(Iy _Ix)+qr1xz’

where L,M, and N are the rolling, pitching and
yawing moments respectively, p(t), q(¢), and r(¢) are

the roll, pitch and yaw rates respectively, 1.1,
and /, are the moment of inertia about X, y, and z
respectively, and [/, is the product moment of inertia.

Simplifying (9), one gets

1
=”72{12[L+(1y —1I,)qr1+ 1[N
xtz

+([x_1 +Iz)pq_]xzqr]}’
Y

p

xXZ

p =[i[M+pr(lz S+ -pHILl (1)
y

) 1
rziz{lx[N"'(lx_Iy)pq]+1xz[L
Isz_ xz

+ (Iy 1, —1,)qr+1,pql}.
Model the aerodynamic moments as

L=L(p,r,64,6,)=l,p+lr+l5 6,+156,,
M = M(q,5,,64) = myq +ms 6, +ms, Oy, (11)
N=N(p,r,6,,6,)=n,p+nr+n, 6,+n, 65,

where &,,0

aileron and throttle servos deflections respectively and
l,myand n's are the aerodynamics derivative

+,0,, and &, are the elevator, ruder,

coefficients.
Substituting (11) into (10), one obtains

1
=———2{Iz[[lpp+er +l§aé'a +l§ 0,1
lez_ "
+(, —Iz)qr]+Ixz[[npp+nrr+n505a

s o 1+, — 1, +1,)pg —I,qrl},

p

Xz

1 (12)
q :I—[mqq ++ms 8, +ms, &y + pr(l; —Iy)
y
+0? = I,
. 1
rzllﬁ{lx[[npp+nrr+n5a§a +n5r§r]
xtz xz



784

+( - 1)pql+ 1Al p+1 r+i5 o,
s 8,14y I —1)qr + 1. pql}.

The state vector is given by
T T
x(t)=[p q r] =[x1 Xy x3] .
By choosing
_ 2 2 T
fxu)=\pq gr pr p~ r" pqrd, 5 5, &y
:[xlxz XpXy X1X3 x12 JC32 X X X3
T
Uy Uy Us I/l4:l 5
and rewriting (12) according to (2), one obtains

Ay 43 000 46 0 45 0 49 4y O
A(t)= 0 0 A23A24A25 0 A27 0 A29 O 0 A2]2 5
A A0 0 04y 0 A3 0 A3 A4 0

where

2
_Ixz(lx_]y+lz) ]z([y_lz)—]xz

1= 7 A2 = 3
Ix]z_[xz lez—lxz
A16= IZZP+IXZnP 18:121r+1xznr
2 2
lez_]xz lez_lxz
1215 +1,.ns 1215 +1,,ns
A= ———— A= ———
Ix]z_lxz lez_]xz
I, -1 I m
Ay =X My =, A= gy =L,
Iy Y Y Iy
m m
A29=I_‘58, Aypy = ffh,
Y y
2
_]x(]x_ly)+[xz _Ixz(ly—lx—lz)
£ ) -~ T
lez_lxz Ix]z_[xz
y _Ixnp+1lep _ILn, + 1L
36 — 2 38 — 2
Ix]z_lxz Ix[z_[xz
Ixnc;r +Ix215r Ixnga +1le5a
Sy
xtz xz xtz xz

The matrix coefficients 4 are unknown and need
to be identified.
The model identifier equation (3) is given by

Xl = At 1 X1 Xm2 + A1 2Xm2%m3 + Ami6Xm1 + Am18Xm3
+ A10¥ + Ap1143s

. 2 2
Yo = Am23Xm2Xm3 + Ap2aX g + Ap2sx 3 + A1 Xm0
+ Aoty + Aoty
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X3 = A3 1XmXm3 + Am32Xm2Xm3 + ApzeXmi + Am3sXm3
+ ApzioUz + Ap311tz-

Equation (5) leads to

ey (1) = A%y = [ Ay (X1 X3 = X1%3) + Ay (X2 %m3
—33x3) + Apis (X — X)) + Apig (X3 — x3));

€3(t) = Aty —[ A3 (5 X3 = X1X3) + Aoy ()
=x%) Ay (3 = x73) + Ay (%2 =),

e3(t) = Ay — [ Ap3) (X1 X3 — X1 %3) + Ap32 (X2 X3

=X2%3) + A3 (X1 — %) + Apzg (X3 — X3))

(13)
Using (7), (8), and (13), one gets

4,0 =ef () K =[et) @) e®)]

[xlxz XoX3 XX3 x12 x32 X] Xy x3 6, 6, O, 5,h]K

If we assume that K is a diagonal matrix then

dA A
dmt” = e ()x (O)x (Dky “ ;;12 = e (1)x, (x5 (kg

dA dA
—d";‘i = e, (1)x; (kg d";lg = ¢, ()3 (kg

dd dA .
#“O‘Zel(f)uz(f)klmo, Ztm = e (Nuz (Dk111s
dA d4 ;
ZImB _ o (1)xy (1) %3 (D33, —224 = ey ()3 (Dkgs»
dr dt
dA,ns 2 ddyy,
—M2D — o, (1)x5 (t)kss, = ey (1)xy ()k7,
== a0 (Dkss, —255 = (0% (Dkr
dA dA
d"f" = e, (N (kg ’"tm = ey (Nug (Dk212,

/A d.
ﬂdmt_u = e3(1)x (D x, (Dky 1, A;Zn =e3(1)xy () x3(Dkyy s

d4,36
dt
dA

dA
'm310 m311 .
—22 — e (Duy (DK , and —2===ey (Nuz (k11
It 3(1) 2() 1010 It 3 (Dus (k1

dA,
= e3(£)x) (kg » dt38 = e3(£)x3 (ks

(14)

By solving nonlinear equation (14) the unknown
parameters matrix can be identified.

The weighting matrix K is chosen so that the
convergence of the identified parameters to the actual
values is very fast. For the present work, it was
selected as

K =diag [k;] R>'?, where k; =0.001.

The selection of a diagonal matrix makes it
computationally easy to assess the effect of the
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Fig. 1. Servos input data.

g sq N

S l |

T s i
10 20 30 20 50

60

§ |

. , . . .
0 10 20 30 40 50 80
Time, secs

Fig. 2. Gyros output data.

elements in the K matrix for convergence. Also to
check for the practicality of the K matrix, it was used
at different flight conditions and the parameters
conversion to the real values was achieved. However,
the results for a particular flight condition only
presented in this paper.

Flight tests were carried out to collect a range of
data for differing flight conditions. Inertial Navigation
Unit with three axis gyros and accelerometers is
employed. Figs. 1 and 2 show the test flight data for a
typical condition. Since the purpose of the present
work is to demonstrate the capability for imitating the
non-linear dynamics of UAV and not the dynamics
characteristics of the UAV in terms of frequency and
damping ratios of different modes of motions (short
period, phugoid, etc.), no particular maneuver inputs
were considered.

As shown in the Figs. 1 and 2 the data is noisy. This
is due to the mounting of the Inertial Navigation Unit
near the engine which imparts substantial noise to the
platform and hence gyros. In addition, the gyros are
cheap ones to minimise the cost of the unit and their
sensitivity is 12.5mv/deg/sec.

4. RESULTS

The flight data are wused directly for the
identification. Before implementing the identification
technique using on-board micro-controllers, and to
check for the applicability of the identification
techniques there is a necessity for real time simulation
using Matlab/Simulink. Fig. 3 shows the real time
simulation loop for the system where the flight data
collected are taken at a sampling rate of 0.05. The
identification algorithm is written as s-function. The
simulink model is built and executed in real time.

Fig. 4 shows the identified model (grey) and the
flight data (black). It is clear from Fig. 4 that the
pitching rate, g(¥), is reasonably identified but for the
roll rate, p(f), and yaw rate, r(¢), the identified model
and the actual values didn’t match each other.

To improve this, the rolling and yawing moments
are modeled as,

L=L(p,r,6,,0,,04)=C p+C1r+C165
+C15 o, +C,5h5,h, s
N=N(p,r,0,,0,,6,;)=C, p+C r+ Cys 5( )

sUgs
+ Cnﬁr 5?‘ + Cnath 5th‘

This means two A coefficients are added to the

Flight

Data Identification
(p.q.r. 8, |———» Algorithm A,
5a:80.8,)

Identified <
Model

Fig. 3. Real time Simulation for UAV.
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structure as well as for the identifier model structure.

1l +1_nd, Ins +1.1
Ay = 20, x22 th and Agyq = xSy, x; o
lez _Ixz Ix]z —Ixz

After adding the two coefficients to UAV model we
found that the identified model and the actual values
matched for p(¢), q(¢), and r(¢) better than if we didn’t
include the throttle affect on rolling and yawing
moments as shown in Fig. 5. Since our UAV is fixed
wing UAV and is driven by a propeller, the change in
the modelling of the rolling and pitching moments is
reasonably accurate and that is clearly recognized
from the results. Fig. 6 shows comparison of results
for another set of flight data for which the identified
model has been tried.

The numerical values for the parameters of the A4
matrix are given by

A =0.0010, A, =0.0107, Ay =-0.1361,
Aig=00111, Ay, =0.0181, A, =0.0030,
Ay =0.0014, A,y =0.0107, Ay, = -0.0103,
Ays = 0.0103, Ay; =-0.1090, A, =0.0105,
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Ay =0.0004, Ay =00102, Asy=0.0093,
Agg = 00104, Asg=-0.1032, Agg=-0.0011,
A311 = 00054, and A312 =0.0001.

5. CONCLUSIONS

The main contribution of this paper is the solution
of the nonlinear identification problem for UAV
attitude dynamics which are described by nonlinear
differential equations. Also, changing in the modeling
of the rolling and yaw moment to include the effect of
the throttle is reasonably accurate for fixed wing UAV
which is driven by a propeller. A nonlinear mapping
identification concept is applied to identify the
unknown parameters of multivariable UAV which is
mapped by nonlinear differential equations. Real time
simulation results show good match between the flight
data and the simulated data after including the effect
of throttle on the rolling and yawing moments.
Presently the work is continuing to reduce the gyro
noise, the Hardware-In-Loop simulation and the
verification for on-line identification. In addition the
design of a suitable controller based on the identified
model is currently under development.
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