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Mutual Detectability and System Enlargemeht of Detection Filters:
An Invariant Zero Approach

Yongmin Kim and Jachong Park

Abstract: In this paper, we discuss the problem of non-mutual detectability using the invariant
zero. We propose a representation method for excess spaces by linear equation based on the
Rosenbrock system matrix. As an alternative to the system enlargement method proposed by
White [1], we propose an appropriate form of an enlarged system to make a set of faults mutually
detectable by assigning sufficient geometric multiplicity of invariant zeros. We show the
equivalence between the two methods and a necessary condition for the system enlargement in
terms of the geometric and algebraic multiplicities of invariant zeros.
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1. INTRODUCTION

The detection filter is a Luenberger observer that
can detect and isolate multiple faults by limiting their
responses to the smallest reachable subspace with
respect to each fault direction [1,2]. In order to ensure
the stability of the residual, an additional condition is
required that the closed-loop eigenvalues should be
arbitrarily assigned in association with those
subspaces.

A set of multiple faults satisfying this requirement
is defined to be mutually detectable, and this is crucial
for designing the detection filters for multiple faults.
If this condition is not satisfied, some fault directions
combine with each other and create fixed eigenvalues.
In addition, if some of these eigenvalues are in the
open right half complex plan, the stability cannot be
guaranteed [1-4].

One of the remarkable researches on the mutually
detectability is that by Massoumnia [3] where he
approached this problem in a geometric formulation
and presented the condition for a system to be
mutually detectable in terms of the invariant zeros.
However, he did not present a solution to the problem
relating to coping with a non-mutually detectable fault
set. White’s [1] solution was a system enlargement
where he presented an input-output equivalent system
by increasing the dimensions of the detection spaces
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of fault directions related to the fixed eigenvalues. As
pointed out in [1], since these eigenvalues are closely
related to invariant zeros, it is essential that the
multiplicity of zeros be investigated. However, the
existing results do not cover this problem sufficiently
enough.

In this paper, we analyze the non-mutual
detectability and consider the system enlargement
proposed by White [1] in terms of the invariant zero.
We show that an excess space is described by the
linear equation that includes more than two fault
directions, by which it is possible to present a way to
identify the fault directions associated with an excess
space. The condition under which this space can be
removed is proposed in terms of the geometric
multiplicity of invariant zero. Considering this fact,
we propose an appropriate form of an enlarged system
and show that this approach is equivalent to the one in
[1]. Further, we present a necessary condition for the
system enlargement by showing a limitation of this
approach in association with the geometric and
algebraic multiplicities.

The advantage of the result of this paper is that the
non-mutually detectability of a detection filter can
simply be described with linear equations. Hence, it is
possible to set up a numerical algorithm for
identifying the applicability of the system enlargement
and to construct an enlarged system using the existing
reliable algorithms to calculate invariant zeros.

2. PRELIMINARIES

Let us consider the following linear time-invariant
system:

(1) = Ax(t) + Bu(t) + Fu(),

1
y(#) = Cx(1), M



770 Yongmin Kim and Jaehong Park

is the
open-loop system dynamics matrix, u(z)is the px1

where x(¢f) is the nxl state vector, A

known input vector with the corresponding input
distribution matrix B. Fu(?) is used to represent faults

acting upon the system, where the column vectors of
F=[f,---,f.] is called the fault directions. w(t)is

the »x1 time varying vector representing the fault
signals. C is the measurement matrix and y(¢) is

the gx1 output vector. We assume the observability
of the pair (4,C).

Detection filters are given in the form of full-order
Luenberg observer as follows:

i(t) = A%(r) + Bu(t) + D(y(r) - $(1)),
) =Cx(@), 2)

where x(¢) is the nx1 state estimation vector and
y(t) is the gx1 output estimation vector. D is a
gain matrix of size nxgq. Defining the state
estimation error as e(t) = x(t) — X(f), it is governed

by the following equation:

é(t) =(A-DC)e(t) + Fu(d),

g(t) = Ce(r), )

where ¢g(¢) is the residual which is the signal used to
detect the fault. If pu(r)=0 and D is designed such
that all the eigenvalues of (4— DC) are located in
the open left half plane, lim,_,, &()=0. The main
objective of the detection filters is to find gain D
such that a) the residual &(¢) is restricted to a pre-
determined direction for each f; in the output space

and b) all the eigenvalues (4A—-DC) can be

arbitrarily assigned.

To satisfy the first condition, the minimum
reachable subspace with respect to each f; must be
defined, which is referred to as the detection space of
/i denoted by D,. Among the various definitions

of the detection space, we utilize the following [5]:
Dy 2span{f;,vij, Vi ), 4)

where vi.j is the invariant zero vector (direction) of

(4, f;,C) associated with the invariant zero z;-

0 I

Wi

vector. In the same manner, group detection space of
F, Dg, can also be defined by the invariant zero

vectors of (A4, F, C).

defined as {ZJ'IC_A —/;Hvz,_} =0, where w; isa rxl

For the second condition, the detection spaces must
satisfy the following: Dp =Uj Dfi , then we say F'is

mutually detectable. This condition can be represented
using the invariant zero.

Zp 26(A4,F,C) - 6(4, £;,C) =2, (5)
=1

where o(-) means the set of the invariant zeros and
W means the union with common elements permitted.

The excess space is defined as the span of the
invariant zero vectors associated with z,. If some
of z,. are located in the open right half plane, the
residual will be unstable as a result of the non-zero
initial error [1].

For the analysis of the detection space in the next
section, we present the definition of the multiplicities
of the invariant zero.

Definition 1: For the following Rosenbrock system
matrix of the triple (4, F, C) [6]:

sl—-4 -F
i|, (6)

C 0

the rank deficiency of P(s) at the complex value z

is called the geometric multiplicity of the
corresponding zero and is equal to the number of
elementary divisors of P(s). The degrez of the

product of the elementary divisors corresponding to
z is called the algebraic multiplicity of the complex
value z.

For the simplicity of notation, m,(z) and mg4(2)
are used to represent the algebraic multiplicity and the
geometric multiplicity of z, respectively. Note that
the following inequality holds: m,(z) > mg(z).

3. SYSTEM ENLARGEMENT

In this section, we present the method for removing
the excess space in consideration of the relationship
between the geometric multiplicity and the algebraic
multiplicity. First, we define the function ZE(.),

which gives the index of column vectors of F
related with zeo(4, F, C) as follows:

=(2) é{ i (w,); %0, P(z)[:j } =0,i= 1,---,r}, %

where (w,); is the ith element of w,. We will
consider P(z) and ZE(z) to be defined for the triple
(4, F, C) hereafter.

Definition 2: Let z be an invariant zero of the
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triple (4, F, C). If the number of the elements of
E(z) is greater than one, z will be referred to as an

intermediate invariant zero.

The intermediate invariant zero causes the excess
space because of the insufficiency of geometric
multiplicity of the invariant zero. Therefore, if we add
complex values that are equal to that zero as repeated
invariant zeros by enlarging the system, the excess
space can be removed.

Lemma 1: For an observable triple (4, F, C), let

z be one of its multiple invariant zeros. If
my(z)=n[E(z)], z€(4,/f;,C) (ieE(z)).
Proof: First, based on the definition of the
|14
geometric multiplicity, in the equation P(z)[WZ } =0,

z
the rank of [VZT WZT I is equal to my(z). Now
define F and 7, collecting the column vectors of

F using Z(z) as follows:

FE{f,icB(2)), w. 2(W, ), ic2z))", ©)

where the subscript i denotes the ith column vector
of the matrix. Then the equation for the Rosenbrock

system matrix with the triple (A, F,C) is given by

d-4 -F|| V. ]
{ c OHWJ_O' ®

W, isthe m,(z)xmy(z) invertible matrix. If we
assume that 7, is not invertible, we can choose
non-zero o such that p o =0. Multiplying it to (9),

we get

|:ZI—A —F}[lfz}a{zl—qm:o’ (10)
c o0 ||w, C

which is a contradiction to the observability assump-
tion.

Muitiplying Wz_l to (9) gives
zZ1-A4 -F
C 0

which can be regarded as the combination of the
Mg (2) equations for the Rosenbrock system matrices

of the triple (4, f;, C) as follows:

Gk R

(an

VZWZ“]Z .

Tng ()

where V.. is the column vector of VZWZ‘1

zX
associated with f; . This implies that z is an
invariant zero of (4, f;, C), which completes the

proof. ’ O

Lemma 1 can be applied to the system enlargement
problem for removing the intermediate invariant zero
of the triple (4,F,C) to obtain the following

mutually detectable system.
Theorem 1: Define a set €y which consists of

the intermediate invariant zeros of the triple
(4, F, C).
Qp 2{z|ze0(4,F,C), n[E(2)] 22}, (13)

where the number of elements of Qp is equal to
Then the following enlarged triple (4, F, C) is
mutually detectable.

Zz{A A”}, c=[c o], F{ﬂ (14)

0 4

V.

where A4, and A,, are given by

Ay = [FWzl FWR FWH

and Ay, =diag{z [, ’”"Z"elive I3

respectively, where §; =n[E(z;)]-m,(z;), z;€Qp
and W, is an n[E(z;)]x (n[E(z;)] - mg(z;)) matrix
which makes the matrix [ W;] invertible from the
zl— 4 —F} v

C 0 ||w

Proof: For the simplicity of the proof, we consider
one of the v, intermediate invariant zeros, say z;.

equation [

In the above enlarged system, the Rosenbrock system
matrix for (4, F, C) and its null space satisfy the
following equation:

/-4, -F
A 0 I |=o, (15)
C 0 , ,
Wi -w3
where
A Fwil - [F] 2
Ai: ’ F= s C:[C O].
O Zil‘t;i O

Since the rank of the null space is given by nr[E(z)]

from the definition of Wj, z; is not an intermediate
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invariant zeros by Lemma 1. Applying this result to
the remaining elements of Q, we obtain a mutually

detectable triple (4, F, C). O
Remark 1: (4, F, C)and (4, F, C) are input-
output equivalent since CA’F =CA'F for j<n

[7]; therefore, the transfer matrices for the two triples
are identical. The enlarged input distribution matrix

B is also given by [BT of ]T .

Remark 2: The detection order of (F); =
[ f,~T of I© will be increased by the number of the
elements of {z|i € Z(z), n[E(z)] =2}, and the required

additional dimension for the enlarged system is given
by

foc= D,

zeo(A4,F,C)

(n[E(2)] = mg (2)). (16)

Remark 3: Note that the relative arguments
(angles) among the directions of the fault response in
the output space are reserved after the enlargement
since CF =CF.

From the above result, for a repeated invariant zero
z, the dimension which can be increased while

maintaining the system to be observable is given by
(n[E(z)]—mg(z)). Since the enlargement increases

the algebraic multiplicity as well as the geometric
multiplicitytherefore, the following condition is
required.

Theorem 2: Define a set Q r following the same

way as in (13). The necessary condition to obtain a
mutually detectable system as in Theorem 1 is given
by

ma(z)zmg(z), zeQp. (17)
Proof: For the simplicity of the proof, we consider
one of the elements of Qy, such as z; as in (15).

Then, from (15), the invariant zeros of the triple
(4, F,C) can be decomposed as follows:

o(dy F,C)={z;z}0 W o4, £,0),
T—’ keE(z;)

where &; =n[E(z;)]-m,(z;). As for the number of

elements of these sets, the following equation holds:

nlo(4 ;, F, C)]~ (n[E(z,)] - mg (z,))
=m,(z;)+ Y, nlo(4, f,O)].

ke=(z;)

When the system is enlarged with respect to z;, the

number of invariant zeros of (4, f,,C) is

increased by one. Therefore,

n[o(4;,F,0l= 3 nlo(4, £ 1.C=m,(z)) - my(z).
keZ(z;)

For F to be mutually detectable, the lefi-hand side
term should be equal to zero, which completes the
proof. O

Similar result is observed in [1], where the system

is the same as (14) except for 4, and 4,,.

Ay =[0, Oy S = F s+ 2 =03 (N £ — 71 (18)
Ay, =diag[Aly, - AVe ], (19)

where v, represents the number of eigenvalues of
the original excess space which has the output

component that lie along the direction Cf), kgk are
the eigenvalues of (4—DC) associated with the

excess space related with f, G,{ are appropriate
nonzero constants and f, =(4-DC)f; which can
be represented with the eigenvectors spanning D i

To show the equivalence between the above result
and (14), first we define the inverse function of Z(z)

as follows:
g1 ()2{z|ieE(z), zeo(4,F, ). (20)

Using this function, if we define a set =_;

klzeZ(h), z€ Qp}, vy = nlZ4].

White [1] proposed the required additional
dimensions to make the fault set F mutually
detectable as follows:

-
ﬁexzzvek ~ V- (21)
k=1

In this equation, we get the following result using the
definition of E;,i,

DV = 2.n[Efl= Y n[E(2)]
k=1

k=1 ZEQF'

and v, is the number of intermediate invariant zeros,
so that the following equation holds.

Ve= D mg(2)

ZEQF

From the above results, we know that the results in
(16) and (21) are identical. In this paper, however, it is
shown that the multiplicities of invariant zeros must
be taken into account for the system enlargement,
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which is not sufficiently discussed in [1]. This will be

briefly discussed as a necessary condition in Theorem 2.

In addition, #, and 7, are the minimum number

of additional dimension for the enlarged system to be
observable.
Lemma 2: Let z be a repeated invariant zero of

the triple (4, F,C). If mg(z)>n[E(2)], (4,0C)
is the unobservable pair with the (mg (z)—n[E(2)])

unobservable eigenvalues equal to z.

Proof: We can prove this lemma using the proof of
Lemma 1. Since the above condition corresponds to
the case that the number of column vectors of p/, is

greater than the number of column vectors of F in
(9), the wunobservability condition in (10) is
established. O

Remark 4: We can make (A4', F', C") by adding
some extra invariant zeros equal to the intermediate
invariant zeros to the enlarged system (4, F, C) in
the similar way to (14); however, the resulting pair
(4', C') becomes unobservable. Therefore, (1 [E(z)]
—mg (z))is the maximum number of invariant zeros

that can be assigned in order to make the fault
directions, F, mutually detectable.

4. ILLUSTRATIVE EXAMPLE

In this section, we consider the system enlargement
problem for two systems; one satisfies the necessary
condition in Theorem 2 and the other does not.

First, consider a system of third order as in (1) with
the following matrices:

0 3 4 3 1
010
A={1 2 3|,C= JF=11 -05|,22)
0 01
0 2 5 1 05

where the input distribution matrix B is omitted.
The invariant zero of the triple (4, F, C) is given

by —0.5. Since the following equation holds

1

((-0.5)/-4)| 0|+ F{O_ﬂ =0, (23)
0

0.5
where =(—0.5)=1{1,2} and w :[ 1:!. The required

additional dimension is given by (n[E(-0.5)]-1)
=2-1=1 from Remark 2. Applying the result of

0
Theorem 1, if we take szL}, [w W51 is

invertible. Then, the enlarged system is given by

03 4 1 3 1
~ 1123 <05 ~ |01 00 - [1 05
A= , C= , F=
025 05 0010 1 05
0 0 0 05 0 0
This triple satisfies the multiplicity condition

presented in Lemma 1, that is, si4(-0.5)=rm,
(—0.5) = n[E(-0.5)] = 2, and thus the system becomes
mutually detectable. The associated invariant zero
vectors are given by [1001]T and [OOOI]T , SO
that the detection spaces of f, and f, are as

follows:
311 1 0
D 1110 D 05110
~ = Span 5 5 =~ =S§pan ’
A TP Ploll 7 T os o
011 0 1

The simulation result for this fault detection filter is
presented in Fig. 1. We assign the eigenvalues

{-1,-2} for Dfl and {-2,-3} for D~2, respec-

tively. For the detailed design method, refer to [1,2].
The fault fj, is activated in 1 second and the fault

Jfopy is activated in 5 seconds. We add two zero-

mean gaussian noises whose variances are commonly
equal to 0.00001 as sensor noises:

(1) = Cx(2) + v, (1),
where v, (f) denotes the noise. In addition, since
CF=CF is not an identity matrix, we multiply
(CF )T to the residual to make the transfer matrix

from p(z) to the residual a diagonal matrix. As can

be seen in the figure, we obtain complete isolation of
the two faults with this fault detection filter.
Next, let us consider the triple (4, F, C) where

0 00 1 -2 -2

-1 0 0 1 1 -1 01 2 3
A= ,C= , = .

1 00 -1 0 1 11 -7 4

0 00 O 6 2

The invariant zero of the triple is given by 2 with
m,(2)=2 and my(2)=1. This triple does not
satisfy the necessary condition of Theorem 2.
Therefore, the difference between the two
multiplicities, (m,(2)-my(2))=1, cannot be elimi-
nated by the system enlargement, making it

impossible to obtain the mutual detectable system. In
particular, since the intermediate invariant zero is
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Fig. 1. Simulation result.

located in the open right half plane, a stable detection
filter for isolating these two faults simultaneously
cannot be designed. In this case, two separated
detection filters for the respective faults should be
designed. |

5. CONCLUSIONS

In this paper, we have analyzed the non-mutual
detectability using the invariant zero; we have shown
that a set of fault directions is mutually detectable if
the system has sufficient geometric multiplicity. With
this fact, the system enlargement is reinterpreted as a
method to obtain a reducible and input-output
equivalent system with appropriate geometric
multiplicity by assigning additional invariant zeros.
We showed that the proposed method is equivalent to
the one in [1], and further we presented a necessary
condition for the system enlargement in terms of the
geometric and algebraic multiplicities.
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