Effects of Dietary Soy Protein and Soy Isoflavones on Cerebral Infarction Size and Antioxidant Enzyme Activities in a Rat Focal Ischemia Model

  • Published : 2006.11.30

Abstract

In this study we investigated the neuroprotective, antioxidative, and hypocholestrolemic effects of dietary soy protein and soy isoflavone in a rat focal brain ischemia model. Weaning Sprague-Dawley rats were fed a 20% casein-based diet (CA), 20% soy protein-based diet (SP), or 0.2% soy isoflavones-supplemented diet (ISO) for 6 weeks. The cortical infarction volume of the ISO group was significantly lower than that of the SP group. The thiobarbituric acid reactive substances (TBARS) were considerably lower in the ISO group than the CA group. Glutatbione peroxidase activities of the SP group were notably higher than those of the CA group. Acetylcholinesterase (AchE) activities of the SP group were significantly decreased compared to the CA group. LDL cholesterol levels and LDL/HDL ratios of the ISO group were lower than those of the CA and SP groups. Our results collectively suggest that soy isoflavones may contribute to neuroprotection by reducing the TBARS and serum LDL/HDL ratio, whereas soy protein may be associated with the regulation of cognitive functions by modulating AchE activity.

Keywords

References

  1. Ball M, Robertson I. Dose diet influence stroke incidence? N Z Med J 107:395-396, 1994
  2. Levin GN, Keaney JF, Vita JA. Cholesterol reduction in cardiovascular disease: clinical benefits and possible mechanisms. N Eng J Med 332:512-521, 1995 https://doi.org/10.1056/NEJM199502233320807
  3. Goldstein LB, Adams R, Becker K, Furberg CD, Gorelick PB, Hademenos G, Hill M, Howard G, Howard VJ, Jacobs B, Levine SR, Mosca L, Sacco RL, Sherman DG, Wolf PA, del Zoppo GJ. Primary prevention of ischemic stroke. A statement for healthcare professionals from the stroke council of the American Heart Association. Stoke 32:280-299, 2001
  4. Wolf PA, Clagett P, Easton D, Goldstein LB, Gorelick PB, Kelly-Hayes M, Sacco RL, Whisnant JP. Preventing ischemic stroke in patients with prior stroke and transient ischemic attack. A statement of healthcare professionals from the stoke council of the American Heart Association. Stroke 30:1991-1994, 1999 https://doi.org/10.1161/01.STR.30.9.1991
  5. Skerrett PJ, Hennekens CH. Consumption of fish and fish oils and decreased risk of stroke. Prev Cardiol 6:38-41, 2003 https://doi.org/10.1111/j.1520-037X.2003.00959.x
  6. Johnson SP, Overvad K, Stripp C, Tjonneland A, Husted SE, Sorensen HT. Intake of fruit and vegetables and the risk of ischemic stroke in a cohort Danish men and women. Am J Clin Nutr 78:57-64, 2003 https://doi.org/10.1093/ajcn/78.1.57
  7. Sauvaget C, Nagano J, Allen N, Kodama K. Vegetable and fruit intake and stroke mortality in the Hiroshima/Nagasaki life span study. Stroke 34:2355-2360, 2003 https://doi.org/10.1161/01.STR.0000089293.29739.97
  8. Nagato C, Takatsuka N, Shimizu H. Soy and fish oil intake and mortality in a Japanese community. Am J Epidemiol 156:824-831, 2002 https://doi.org/10.1093/aje/kwf118
  9. Demonty I, Lamarche B, Jones PJH. Role of isoflavones in the hypocholesterolemic effect of soy. Nutr Rev 61:189-203, 2003 https://doi.org/10.1301/nr.2003.jun.189-203
  10. Clarkson TB. Soy, soy phytoestrogens and cardiovascular disease. J Nutr 132:566S-569S, 2002
  11. Chowdhury P, Soulsby M. Lipid peroxidation in rat brain is increased by stimulated weightlessness and decreased by a soy-protein diet. Ann Clin Lab Sci 32(2):188-192,2002
  12. Wei H, Bowen R, Cai Q, Barnes S, Wang Y. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Exp Bioi Med 208:124-130, 1995 https://doi.org/10.3181/00379727-208-43844
  13. Aurora A, Nair MG, Strasburg GM. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys 356:133-141, 1998 https://doi.org/10.1006/abbi.1998.0783
  14. Appelt LC, Reicks MM. Soy induces phaseIIenzymes but dose not inhibit dimethylbenz[a]anthracene-induced carcinogenesis in female rats. J Nutr 129:1820-1826, 1999 https://doi.org/10.1093/jn/129.10.1820
  15. Lund TD, Lephart ED. Manipulation of prenatal hormones and dietary phytoestrogens during adulthood alter the sexually dimorphic expression of visual spatial memory. BMC Neurosci 2(1):21, 2001 https://doi.org/10.1186/1471-2202-2-21
  16. Lund TD, West TW, Tian LY, Bu LH, Simmons DL, Setchell KDR, Adlercreutz H, Lephart ED. Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogen. BMC Neurosci 2(1):20, 2001 https://doi.org/10.1186/1471-2202-2-20
  17. Kriz-Silverstein D, Von Muhlen D, Barrett-Connor E, Bressel MA. Isoflavones and cognitive function in older women: the soy and postmenopausal health in aging (SOPHIA) study. Menopause 10:196-202, 2003 https://doi.org/10.1097/00042192-200310030-00004
  18. File SE, Jarrett N, Fluck E, Duffy R, Casey K, Wiseman H. Eating soya improves human memory. Psychopharmacology 157:430-436, 2001 https://doi.org/10.1007/s002130100845
  19. Choi EJ, Lee BH. Evidence for genistein mediated cytotoxicity and apoptosis in rat brain. Life Sci 75:499-509, 2004 https://doi.org/10.1016/j.lfs.2004.01.010
  20. Zeng H, Chen Q, Zhao B. Genistein ameliorates $\beta$ -amyloid peptide (25-25)-induced hippocampal neuronal apoptosis. Free Radc Biol Med 36:180-188, 2004 https://doi.org/10.1016/j.freeradbiomed.2003.10.018
  21. SOllee M, Sum T, Wang C, Mukherjee SK. The soy isoflavone, genestein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology 25:885-891, 2004 https://doi.org/10.1016/j.neuro.2003.11.001
  22. Lee YB, Lee HJ, Won MH, Hwang IK, Kang TC, Lee JY, Nam SY, Kim KS, Kim E, Cheon SH, Sohn, HS. Soy isotlavones improve spatial delayed matching-to-place performance and reduce cholinergic neuron loss in elderly male rats. J Nutr 134:1827-1831, 2004 https://doi.org/10.1093/jn/134.7.1827
  23. Sobey CG, Weiler JM, Boujaoude M, Woodman OL. Effect of short-term phytoestrogen treatment in male rats on nitric oxide-mediated responses of carotid and cerebral arteries: comparison with 17$\beta$-estradiol. J Pharmacol Exp Ther 310:135-140, 2004 https://doi.org/10.1124/jpet.103.063255
  24. Messina M, Barnes S. The role of soy products in reducing cancer risk. J Natl Cancer Inst 83:541-546, 1991 https://doi.org/10.1093/jnci/83.8.541
  25. Anthony MS, Clarckson TB, Hughes CL, Morgan TM, Burke GL. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J Nutr 126:43-50, 1996 https://doi.org/10.1093/jn/126.1.43
  26. Greaves KA, Parks JS, Williams JK, Wagner JD. Intact dietary soy protein, but not adding an isoflavone-rich soy extract to casein, improves plasma lipids in ovariectomized cynomolgus monkeys. J Nutr 129:1585-1592, 1999 https://doi.org/10.1093/jn/129.8.1585
  27. Song T, Lee SO, Murphy PA, Hendrich S. Soy protein with or without isoflavones, soy germ and soy germ extract, and diadzein lessen plasma cholesterol levels in golden Syrian hamsters. Exp Biol Med 228:1063-1068, 2003 https://doi.org/10.1177/153537020322800912
  28. Balmir F, Stack R, Jeffrey E, Berver J, Wang L, Potter SM. An extract of soy flour influences serum cholesterol and thyroid hormones in rats and hamsters. J Nutr 126:3046-3053, 1996
  29. Crouse JR, Byington RP, Hoen HM, Furberg CD. Reductase inhibitor monotherapy and stroke prevention. Arch Int Med 157:1305-1310, 1997 https://doi.org/10.1001/archinte.157.12.1305
  30. Han KK, Soares JM, Haidar MA, De Lima GR, Baracat EC. Benefits of soy isoflavone therapeutic regimen on menopausal symptoms. Obstet Gynecol 99:389-394, 2002 https://doi.org/10.1016/S0029-7844(01)01744-6
  31. Anderson JW, Spencer DO, Riddell-Mason S, Floore TL, Dillon DW, Oeltgen PR. Postprandial serum glucose, insulin, and lipoprotein responses to high- and low-fiver diets. Metabolism 44:848-854, 1995 https://doi.org/10.1016/0026-0495(95)90236-8
  32. Lepart ED, West TW, Weber KS, Rhees RW, Setchell KDR, Adlercreutz H, Lund TD. Neurobehavioral effects of dietary soy phytoestrogens. Neurotol Teratol 24:5-16, 2002 https://doi.org/10.1016/S0892-0362(01)00197-0
  33. Zubenko GS, Moosy J, Martinez AJ, Rao GR, Kopp U, Harm IA. A brain regional analysis of morphologic and cholinergic abnormalities in Alzheimer's disease. Arch Neural 46:634-638, 1989 https://doi.org/10.1001/archneur.1989.00520420054022
  34. Kim HK, Kim M, Kim S, Kim M, Chung JH. Effects of green tea polyphenol on cognitive and acetylcholinesterase activities. Biosci Biotechnol Biochem 68:1977-1979, 2004 https://doi.org/10.1271/bbb.68.1977
  35. Nagasawa H, Kogure K. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:1037-1043, 1989 https://doi.org/10.1161/01.STR.20.8.1037
  36. Adams PM, Damasio CM, Putman FS, Damasio RA. Middle cerebral artery occlusion as a cause of isolated subcortical infarction. Stroke 14:948-952, 1983 https://doi.org/10.1161/01.STR.14.6.948
  37. Xu J, Culman J, Blume A, Brecht S, Gohlke P. Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke 34:1287-1292, 2003 https://doi.org/10.1161/01.STR.0000066308.25088.64
  38. Bu Y, Jin ZH, Park SY, Baek S, Rho S, Ha N, Park SK, Kim H, Kim SY. Siberian ginseng reduces infarct volume in transient focal cerebral ischaemia in Sprague-Dawley rats. Phytother Res 19:167-169, 2005 https://doi.org/10.1002/ptr.1649
  39. Castellanos M, Puig N, Carbonell T, Castillo J, Martinez J, Rarna R, Davalos A. Iron intake increases infarct volume after permanent middle cerebral artery occlusion in rats. Brain Res 952:1-6, 2002 https://doi.org/10.1016/S0006-8993(02)03179-7
  40. Choi-Kwon S, Park KA, Lee HJ, Park MS, Lee JH, Jeon SE, Choe MA, Park KC. Temperal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: effect of dietary fish oil. Dev Brain Res 152:11-18, 2004 https://doi.org/10.1016/j.devbrainres.2004.05.004
  41. Suzuki M, Tabuchi M, Ikeda M, Umegaki K, Tomita T. Protective effects of green tea catechins on cerebral ischemic damage. Med Sci Monit 10:166-174, 2004
  42. Fallon JT. Simplified method for histochemical demonstration of experimental myocardial infarct. Circulation 10:267-272, 1979
  43. Bederson JB, Pitts LH, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17:1304-1308, 1986 https://doi.org/10.1161/01.STR.17.6.1304
  44. Bartus RT, Baker KL, Heiser AD, Sawyer SD, Dean RL, Elliott PJ, Straub JB. Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J Cereb Blood Flow Metab 14:537-544, 1994 https://doi.org/10.1038/jcbfm.1994.67
  45. Liao SL, Chen WY, Raung SL, Kuo JS, Chen CJ, Association of immune responses and ischemic brain infarction in rat. Neuroreport 12:1943-1947, 2001 https://doi.org/10.1097/00001756-200107030-00034
  46. Roy D, Pathak DN, Singh R. Effects of chlorpromazine on the activities of antioxidant enzymes and lipid peroxidation in the various regions of aging rat brain. J Neurochem 42:628-633, 1984 https://doi.org/10.1111/j.1471-4159.1984.tb02728.x
  47. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 52:302-310, 1978 https://doi.org/10.1016/S0076-6879(78)52032-6
  48. Misura OP, Fridovich I. The role of superoxide anion in the antioxidant of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170-3175, 1972
  49. Abei H. Catalase in vitro. Methods Enzymol 105:121-127, 1984 https://doi.org/10.1016/S0076-6879(84)05016-3
  50. Tapple AL. Glutathione peroxidase and hydroperoxides. Methods Enzymol 52:506-513, 1978 https://doi.org/10.1016/S0076-6879(78)52055-7
  51. Collier B. Biochemistry and physiology of cholinergic transmission. In: Brookhart JM, Mount CVB, Kandel ER, Gieger SR eds. Handbook of Physiology, pp.463-602, American Physiology Society, USA, 1997
  52. Hata T, Kita T, Higashiguchi T, Ichida S. Total acetylcholine content and activities of cholineacetyl transferase and acetylcholinesterase in brain and duodenum of SART stressed (repeated cold stressed) rat. Jpn J Pharmacol 41:475-485, 1986 https://doi.org/10.1254/jjp.41.475
  53. Geoffroy M, Tvede K, Christensen AV, Schou JS. The effect of imipramine and lithium on 'learned helplessness' and acetylcholinesterase in rat brain. Pharmacol Biochem Behav 17:304-306, 1991
  54. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88-95, 1961 https://doi.org/10.1016/0006-2952(61)90145-9
  55. Lowry OH, Rosebrough NJ, Farr AL, Randall RT. Protein measurement with the Folin phenol reagent. J Bioi Chem 193:265-275, 1951
  56. Fran K, Donald E, James G. Research trends in healthful foods. Food Technol 54:45-52, 2000
  57. El-Demerdash FM, Yousef MI, AI Salhen KS. Protective effects of isoflavone on some biochemical parameters affected by cypermethrin in male rabbits. J Environ Sci Health 38(3): 365-378, 2003 https://doi.org/10.1081/PFC-120019902
  58. Song YJ, Igawa S, Horri A. Antioxidant enzymes response to endurance exercise training and dietary proteins in rat skeletal muscle and liver. Appl Human Sci 15(5):219-225, 1996 https://doi.org/10.2114/jpa.15.219
  59. Oh HK, Kim SH. Effect of soy isoflavone intake vater maze performance and brain acetylcholinesterase activity in rats. Korean J Nutrition 39(3):219-224, 2006
  60. Goss PM, Bray TM, Nagy LE. Regulation of hepatocyte glutathione by amino acid precursors and cAMP in protein-energy malnourished rats. J Nutr 124:323-330, 1994
  61. Crouse JR, Morgan T, Terry JG, Ellis J, Vitolins M, Burke GL. A randomized trial comparing the effect of casein with that of soy protein containing varying amouts of isoflavones on plasma concentrations of lipids and lipoproteins. Arch Intern Med 159:2070-2076, 1999 https://doi.org/10.1001/archinte.159.17.2070
  62. Anderson JW, Johnstone BM, Cook-Newell ME. Metaanalysis of the effects of soy protein intake on serum lipids. N Eng J Med 333:276-282, 1995 https://doi.org/10.1056/NEJM199508033330502
  63. Lucas EA, Khalilm DA, Daggy BP, Arjmandi BH. Ethanolextracted soy protein isolate dose not modulate serum cholesterol in Golden Syrian hamsters: a model of postmenopausal hypercholesterolemia. J Nutr 131:211-214, 2001
  64. Zhang X, Patel A, Horibe H, Wu Z, Barzi F, Rodgers A, MacMahon S, Woodward M. Cholesterol, coronary heart disease, and stroke in the Asia Pacific region. Int J Epidemiol 32:563-572, 2003 https://doi.org/10.1093/ije/dyg106
  65. Tirschwell DL, Smith NL, Heckbert SR, Lemaitre RN, Lonstreth WT, Psaty BM. Association of cholesterol with stroke risk varies in stroke subtypes and patient subgroups. Neurology 63:1868-1875, 2004 https://doi.org/10.1212/01.WNL.0000144282.42222.DA
  66. Sacco RL, Benson RT, Kargman DE, Boden-Albala B, Tuck C, Lin IF, Cheng JF, Paik MC, Shea S. High-density lipoprotein cholesterol and ischemic stroke in the elderly. JAMA 285:2729-2735, 2001 https://doi.org/10.1001/jama.285.21.2729