DOI QR코드

DOI QR Code

평행류와 Interdigitated 유로를 가진 교분자 전해질 연료전지(PEMFC)의 성능특성에 대한 수치해석

Numerical Analysis on Performance Characteristics of PEMFC with Parallel and Interdigitated Flow Channel

  • 발행 : 2006.11.28

초록

고분자 전해질 연료전지의 분리판의 유동채널 설계는 고전류밀도에서 발생하는 농도분극에 직접적인 영향을 줄 뿐 아니라 생성되는 물의 효과적인 전달을 위하여 매우 중요하다. 평행류 유로와 interdigitated 유로의 성능비교를 위하여 연료극과 공기극이 포함된 완전한 형태의 고분자 전해질 연료전지의 3차원 수치해석모델을 개발하였다. 수치해석모델을 사용하여 평행류 유동장과 interdigitated 유동장의 압력강하, 채널간의 물질전달, $H_2O$$O_2$의 농도 분포 그리고 i-V 성능을 비교하였다. 그 결과 물질전달에서 채널간의 대류에 의한 물질전할이 더욱 우수한 interdigitated 유동채널에서 성능이 더 높게 나타났으며 압력강하는 보다 크게 나타나 설계시 두가지 성능에 대한 상호보완이 필요함을 알 수 있었다.

Optimum design of flow channel in the separation plate of Proton Exchange Membrane Fuel Cell is very prerequisite to reduce concentration over potential at high current region and remove the water generated in cathode effectively. In this paper, fully 3 dimensional computational model which solves anode and cathode flow fields simultaneously is developed in order to compare the performance of fuel cell with parallel and interdigitated flow channels. Oxygen and water concentration and pressure drop are calculated and i-V performance characteristics are compared between flows with two flow channels. Results show that performance of fuel cell with interdigitated flow channel is hi민or than that with parallel flow channel at high current region because hydrogen and oxygen in interdigitated flow channel are transported to catalyst layer effectively due to strong convective transport through gas diffusion layer but pressure drop is larger than that in parallel flow channel. Therefore Trade-off between power gain and pressure loss should be considered in design of fuel cell with interdigitated flow channel.

키워드

참고문헌

  1. A. Kazim, H. T. Liu, and P. Forges, Modeling of performance of PEM fuel cells with conventional and interdigitated flow fields, J. Appl. Electrochem., 29, 1409-1416 (1999) https://doi.org/10.1023/A:1003867012551
  2. T. V. Nguyen, Modeling two-phase flow in the porous electrodes of proton exchange membrane fuel cells using the interdigitated flow fields, Presented at the 195th Meeting of Electrochemical Society, 47 May 1999, Seattle
  3. D. L. Wood, J. S. Yi, and T. V. Nguyen, Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells, Electrochim. Acta, 43, 3795-3809 (1998) https://doi.org/10.1016/S0013-4686(98)00139-X
  4. T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, Polymer electrolyte fuelcell model, J. Electrochem. Soc., 138, 2334-2342 (1991) https://doi.org/10.1149/1.2085971
  5. T. F. Fuller and J. Newman, Water and thermal management in solid polymer electrolyte fuel cells, J. Electrochem. Soc., 140, 1218-1225 (1993) https://doi.org/10.1149/1.2220960
  6. T. V. Nguyen and R. E. White, A water and heat management models for Proton Exchange Membrane fuel cells, J. Electrochem. Soc., 140, 2178-2186 (1993) https://doi.org/10.1149/1.2220792
  7. J. S. Y1and T. V. Nguyen, An along the channel model for proton exchange membrane fuel cells, J. Electrochem. Soc., 145, 1149-1159 (1998) https://doi.org/10.1149/1.1838431
  8. J. S. Yi and T. V. Nguyen, Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors, J. Electrochem. Soc., 146, 38-45 (1999) https://doi.org/10.1149/1.1391561
  9. V. Gurau, H. Liu, and S. Kakac, Two dimensional model for proton exchange membrane fuel cells, AIChE Journal, 144, 2410-2422 (1998)
  10. Trung and V. Nguyen, A gas distributor design for Proton exchange membrane fuel cell, J. Electrochem. Soc., 143, L103-L105 (1996) https://doi.org/10.1149/1.1836666
  11. A. Kazim, H. T. Liu, and P. Forges, Modeling of performance of PEM fuel cells with conventional flow field, J. Appl. Electrochem., 26, 1409-1416 (1999)
  12. J. S. Yi and T. V. Nguyen, Multicomponent transport in porous electrodes of proton exchange membrane fuel cell using the interdigitated gas distributors, J. Electrochem. Soc., 146, 1149-1159 (1999)
  13. S. Urn and C. Y. Wang, Three dimensional analysis of transport and reaction in proton exchange membrane fuel cells, in proceedings of the ASME fuel cell division, 5-10 November 2000, Orlando
  14. Guilin Hu and Jianren Fan, Three-dimensional numerical analysis of proton exchange membrane fuel cell(PEMFCs) with conventional and intrdigitated flow fields J. Power Soc., 136, 1-9 (2004) https://doi.org/10.1016/j.jpowsour.2004.05.010
  15. S. Um, Computational modeling of transport and electrochemical reaction in proton exchange membrane fuel cell. Ph.D. Thesis. Penn State University, 2003
  16. S. Shimpalee, S. Dutta, W. K. Lee, and J. W. Van Zee, Effect of humidity on PEM fuel cell performance part II-mumerical simulation, Proceeding of ASME IMECH, TN, HTD 364-1, 367-374 (1999), Nashville
  17. W. K. Lee, J. W. Van Zee, S. Shimpalee, and S. Dutta, Effect of humidity on PEM fuel cell performance part I-experiments, 1999 international mechanical engineering congress & exposition, TN November 14, Nashville
  18. W. K. Lee, C. H. Ho, J. W. V. Zee, and M. Murthy, The effects of compreddion and gas diffusion layers on the performance of a PEM fuel cell, J. of Power Soc., 84, 45-51 (1999) https://doi.org/10.1016/S0378-7753(99)00298-0
  19. S. Shimpalee, S. Dutta, and J. W. Van Zee, Numerical prediction of local temperature and current density in a PEM fuel cell, 2000 IMECE, in session of transport phenomena in fuel cell system, paper no,2-6-3-2, Orlando
  20. S. Dutta, S. Shimpalee, and J. W. Van Zee, Numerical prediction of mass-exchange between anode and cathode channels in a PEM fuel cell, International J. of Heat and Mass Transfer, 44, 2029-2042 (2001) https://doi.org/10.1016/S0017-9310(00)00257-X
  21. E. A. Ticianelli, J. G. Berry, and S. Srinivasan, Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphologic characteristics of the electrodes, J. Electroanal. Chem., 251, 275-295 (1988) https://doi.org/10.1016/0022-0728(88)85190-8