DOI QR코드

DOI QR Code

Effect of Epoxy Cracking on Initial Quench Behavior about High Field Superconducting Magnet

  • Lee, B.S. (Korea Basic Science Institute) ;
  • Kim, D.L. (Korea Basic Science Institute) ;
  • Choi, Y.S. (Korea Basic Science Institute) ;
  • Yang, H.S. (Korea Basic Science Institute) ;
  • Yoo, J.S. (Korea Basic Science Institute)
  • 발행 : 2006.11.30

초록

The study to be presented related on initial behavior of quench concerned with many considerations, such as epoxy impregnated coil, critical current density related on strain and temperature, winding effect and behavior of internal superconducting wire. Especially, the deformation behavior of coils under magnetic field and thermal contractions at cryogenic temperatures to be dealt with the analytical method related on Fracture Mechanics. From the results, we know that the strain by self weight contribute to epoxy cracking at the edge of deformed coils and the deformation behavior relate on epoxy cracking must be dealt with biaxial loading problem. Then, the epoxy crack on $r\theta-plane$ under biaxial loading have been propagated with inclined crack angle and joined superconducting wire. Also, we can explain transfer of epoxy crack propagation energy from epoxy resin to superconducting wire.

키워드

참고문헌

  1. Y. Iwasa, 'Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 1. General introduction,' Cryogenics, vol.25, no. 6, pp. 304-306, 1985 https://doi.org/10.1016/0011-2275(85)90013-X
  2. E. S. Bobrov, J. E. C. Williams, and Y. Iwasa, 'Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 2. Shear-stress-induced epoxy fracture as the principal source of premature quenches and training - theoretical analysis,' Cryogenics, vol.25, no. 6, pp. 307-316, 1985 https://doi.org/10.1016/0011-2275(85)90014-1
  3. Y. Iwasa, E. S. Bobrov, O. Tsukamoto, T. Takaghi, and H. Fujita, 'Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 3. Fracture-induced premature quenches,' Cryogenics, vol.25, no. 6, pp. 317-322, 1985 https://doi.org/10.1016/0011-2275(85)90015-3
  4. H. Fujita, T. Takaghi, and Y. Iwasa, 'Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 4. Prequench cracks and frictional motion,' Cryogenics, vol.25, no. 6, pp. 323-326, 1985 https://doi.org/10.1016/0011-2275(85)90016-5
  5. Y. S. Choi, D. L. Kim, B. S. Lee, H. S. Yang, T. A. Painter, and J. R. Miller, 'Closed-Loop Cooling System for High Field Magnets,' Journal of the Korea Institute of Applied Superconductivity and Cryogenics, vol. 8, no. 1, pp. 59-64
  6. T. A. Painter, W. D. Markiewicz, J. R. Miller, S. T. Bole, I. R. Dixon, K. R. Cantrell, S. J. Kenney, A. J. Trowell, D. L. Kim, B. S. Lee, Y. S. Choi, H. S. Kim, C. L. Hendrickson, and A. G. Marshall, 'Requirements and conceptual superconducting magnet design for a 21 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer,' IEEE Trans. Appl. Supercond., vol. 16, no. 2, June 2006
  7. R. Yamada, S. W. Kim, A. Lee, R. Wands, J-M. Rey, and M. Wake, 'Quenches and resulting thermal and mechanical effects on epoxy impregnated $Nb_3Sn$ hign field magnets,' in Proc. of the 2001 Particle Accelerator Conf., Chicago, pp. 3424-3426
  8. S. L. Bray, J. W. Ekin, D. J. Waltman, and M. J. Superczynski, 'Quench energy and fatigue degradation properties of Cu- and Al/Cu-stabilized Nb-Ti epoxy-impregnated superconductor coils,' IEEE Trans. Appl. Supercond., vol. 5, no. 2, June 1995
  9. R. Yamada, E. Marcsin, A. Lee, M. Wake, and J. M. Rey, '2-D/3-D quench simulation using ANSYS for epoxy impregnated $Nb_3Sn$ High Field Magnets,' IEEE Trans. Appl. Supercond., vol. 13, no. 2, June 2003
  10. R. Yamada, e. Marcsin, A. Lee, and M. Wake, '3D ANSYS quench simulation of cosine theta $Nb_3Sn$ high field dipole magnets,' IEEE Trans. Appl. Supercond., vol. 14, no. 2, June 2004
  11. L. Imbasciati, P. Bauer, G. Ambrosio, M. J. Lamm, J. R. Miller, G. E. Miller, and A. V. Zlobin, 'Effect of thermo-mechanical stress during quench on $Nb_3Sn$ cable performance,' IEEE Trans. Appl. Supercond., vol. 13, no. 2, June 2003
  12. N. V. Krivolutskaya, and O. A. Kleshnina, 'Stresses in superconducting solenoid winding during its quench,' IEEE Trans. on Magnetics, vol. 30, no. 4, pp. 2547-2549, July 1994 https://doi.org/10.1109/20.305797
  13. H. E. Kadi, and F. Ellyin, 'Crack extension in unidirectional composite laminae,' Engineering Fracture Mechanics, vol. 51, no. 1, pp. 27-36, 1995 https://doi.org/10.1016/0013-7944(94)00222-4
  14. W. K. Lim, S. Y. Choi, and B. V. sankar, 'Biaxial load effects on crack extension in anisotropic solids,' Engineering Fracture Mechanics, vol. 68, no. 4, pp. 403-416, 2001 https://doi.org/10.1016/S0013-7944(00)00103-X
  15. M. L. Ayari, and Z. Ye, 'Maximum strain theory for mixed mode crack propagation in anisotropic solids,' Engineering Fracture Mechanics, vol. 52, no. 3, pp. 389-400, 1995 https://doi.org/10.1016/0013-7944(95)00040-3
  16. M. M. I. Hammouda, A. S. Fayed, and H. E. M. Sallam, 'Simulation of mixed mode I/II cyclic deformation at the tip of a short kinked inclined crack with frictional surfaces,' International Journal of Fatigue, vol. 25, no. 8, pp. 743-753, 2003 https://doi.org/10.1016/S0142-1123(03)00047-1
  17. L. Nobile, and C. Carloni, 'Fracture analysis for orthotropic cracked plates,' Composite Structures, vol. 68, no. 3, pp. 285-293, 2005 https://doi.org/10.1016/j.compstruct.2004.03.020
  18. C. Carloni, and L. Nobile, 'Maximum circumferential stress criterion applied to orthotropic materials,' Fatigue Fract. Engng. Mater. Struct., vol. 28, no. 9, pp. 825-833, 2005 https://doi.org/10.1111/j.1460-2695.2005.00922.x
  19. I. R. Dixon, R. P. Walsh, W. D. Markiewicz, and C. A. Swenson, 'Mechanical properties of epoxy impregnated superconducting solenoids,' IEEE Trans. on Magnetics, vol. 32, no. 4, pp. 2917-2920, July 1996 https://doi.org/10.1109/20.511486
  20. I. R. Dixon, W. D. Markiewicz, and W. S. Marshall, 'Axial mechanical properties of epoxy impregnated superconducting solenoids at 4.2 K,' IEEE Trans. Appl. Supercond., vol. 10, no. 1, March 2000