참고문헌
- Alizadeh, A. A. et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, 403, 491-492 https://doi.org/10.1038/35000684
- Alon, V., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proc. Nat. Acad. Sci., 96, 6745-6750
- Anderson, J. A. (1975). Quadratic logistic discrimination, Biometrika, 62, 149-154 https://doi.org/10.1093/biomet/62.1.149
- Antoniadis, A., Lambert-Lacroix, S. and Leblanc, F. (2003). Effective dimension reduction methods for tumor classification using gene expression data, Bioinformatics, 19, 563-570 https://doi.org/10.1093/bioinformatics/btg062
- Baek, J. and Son, Y. S. (2006). Local linear logistic discriminant analysis with partial least square components, To appear in Lecture Notes in Artificial Intelligence (LNAI 4093)
- Bicciato, S., Luchini, A. and Di Bello, C. (2003). PCA disjoint models for multiclass cancer analysis using gene expression data, Bioinformatics, 19, 571-578 https://doi.org/10.1093/bioinformatics/btg051
- Bolstard B. M. et al. (2003). A comparison of normalization methods for high density oligonucleotide array data based on bias and variance, Bioinformatics, 19, 185-193 https://doi.org/10.1093/bioinformatics/19.2.185
- Dudoit, S. et al. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data, J. Am. Stat. Assoc., 97, 77-87 https://doi.org/10.1198/016214502753479248
- Dudoit, S. and Fridlyand, J. (2003). Classification in microarray experiments, In Speed, T.P., Statistical analysis of gene expression microarray data, Chapman and Hall-CRC, New York
- Fan, J. and Gijbels, I. (1996). Local polynomial modeling and its applications, London: Chapman & Hall
- Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeck, M., Mesirov, P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A. et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 531-537 https://doi.org/10.1126/science.286.5439.531
- Loader, C. (1999). Local regression and likelihood, New York: Springer
- Martella, F. (2006). Classification of microarray data with factor mixture models, Bioinformatics, 22, 202-208 https://doi.org/10.1093/bioinformatics/bti779
- McLachlan, G. J. et al. (2002). A mixture model-based approach to the clustering of microarray expression data, Bioinformatics, 18, 413-422 https://doi.org/10.1093/bioinformatics/18.3.413
- Nguyen, D. and Rocke, D. (2002). Tumor classification by partial least squares using microarray gene expression data. Bioinformatics, 18, 39-50 https://doi.org/10.1093/bioinformatics/18.1.39
- West, M., Blanchette, C., Dressman, H., Huang, F., Ishida, S., Spang, R., Zuzan, H., Olason, J., Marks, I., Nevins, J. (2001). Predicting the clinical status of human breast cancer by using gene expression profiles. PNAS, 98, 11462-11467
- Xia, Y., Tong, H., Li, W. K. and X, Z. L. (2002). An adaptive estimation of dimension reduction space, J. R. Statist. Soc. B., 64, 363-410
- Yeung K. Y. et al. (2001). Model-based clustering and data transformations for gene expression data, Bioinformatics, 17, 977-987 https://doi.org/10.1093/bioinformatics/17.10.977