References
- Amemiya, T. (1971). The estimation of the variances in a variance components model, International Econometric Review, 12, 1-13 https://doi.org/10.2307/2525492
- Baltagi, B. H., Song, S. H. and Jung, B. C. (2001). The unbalanced nested error component regression model, Journal of Econometrics, 101, 357-381 https://doi.org/10.1016/S0304-4076(00)00089-0
- Baltagi, B. H., Song, S. H. and Jung, B. C. (2002). Simple LM tests for unbalanced nested error component regression model, Econometric Reviews, 21, 167-187 https://doi.org/10.1081/ETC-120014347
- Baltagi, B. H., Song, S. H. and Koh, W. (2003). Testing panel data regression model with spatial error correlation, Journal of Econometrics, 117, 123-150 https://doi.org/10.1016/S0304-4076(03)00120-9
- Belsley, D. (1991). Conditioning Diagnostics: Collinearity and Weak Data in Regression, John Wiley, New York
- Golan, A. (1994). A multi-variable stochastic theory of size distribution of firms with empirical evidence, Advances in Econometrics, 10, 1-46
- Golan, A., Judge, G. and Robinson, S. (1994). Recovering information in the case of partial multisectorial economic data, Review of Economics and Statistics, 76, 541-549 https://doi.org/10.2307/2109978
- Golan, A. and Judge, G. (1996). Recovering information in the case of underdetermined problems and incomplete data, Journal of Statistical Planning and Inference, 49, 127-136 https://doi.org/10.1016/0378-3758(95)00033-X
- Golan, A., Judge, G., and Miller, D. (1996). Maximum Entropy Econometrics: Robust Estimation with Limited Data, John Wiley, New York
- Jaynes, E. T. (1957a). Information theory and statistical mechanics, Physics Review, 106, 620-30 https://doi.org/10.1103/PhysRev.106.620
- Jaynes, E. T. (1957b). Information theory and statistical mechanics II, Physics Review, 108, 171-90 https://doi.org/10.1103/PhysRev.108.171
- Jaynes, E. T. (1984). Prior information and ambiguity in inverse problems, In D. W. McLaughlin (Ed.) Inverse problems, p.151-66, SIAM Proceedings, American Mathematical Society, Providence, RI
- Judge, G. G. and Golan, A. (1992). Recovering information in the case of ill-posed inverse problems with noise, Unpublished paper, University of California at Berkeley
- Judge, G. G., Hill, R. C., Griffiths, W. E., Lutkepohl, H. and Lee, T. C. (1988). Introduction to the Theory and Practice of Econometrics, John Wiley, New York
- Levine, R. D. (1980). An information theoretical approach to inversion problems, Journal of Physics, 13, 91-108
- Levine, R. D. and Tribus, M. (1979). The Maximum Entropy Formalism, MIT Press, Cambridge
- Moulton, B. R. (1986). Random group effects and precision of regression estimates, Journal of Econometrics, 32, 385-397 https://doi.org/10.1016/0304-4076(86)90021-7
- Shannon, C. E. (1948). A mathematical theory of communication, Bell system Technical Journal, 27, 379-423 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Swamy, P. A. V. B. and Arora, S. S. (1972). The exact finite sample properties of the estimators of coefficients in the error components regression models, Econometrica, 40, 261-275 https://doi.org/10.2307/1909405
- Wansbeek, T. J. and Kapteyn, A. (1982). A simple way to obtain the spectral decomposition of variance components model for balanced data, Communication in Statistics, 11, 2105-2112 https://doi.org/10.1080/03610928208828373
Cited by
- Estimation for the multi-way error components model with ill-conditioned panel data vol.46, pp.1, 2017, https://doi.org/10.1016/j.jkss.2016.05.008
- Dual Generalized Maximum Entropy Estimation for Panel Data Regression Models vol.21, pp.5, 2014, https://doi.org/10.5351/CSAM.2014.21.5.395