참고문헌
- Artzner, P., Delbaen, F., Eber, J. M. and Heath, D. (1999). Coherent Measures of Risk, Mathematical Finance, 9, 203-228 https://doi.org/10.1111/1467-9965.00068
- Balkema, A. A. and de Haan, L. (1974). Residual lifetime at great age. Annals of Probability, 2, 792-804 https://doi.org/10.1214/aop/1176996548
- Berkowitz, J. and O'Brien, J.( 2002). How accurate are Value-at-Risk models at commercial banks? Journal of Finance, 57, 1093-1112 https://doi.org/10.1111/1540-6261.00455
- Boyue, E., Durrleman, V., Nickeghbail, A., Riboulet, G. and Roncalli, T. (2000). Copula for Finance - A Reading Guide and Some Application, Working Paper
- Bradley, B. O. and Taqqu, M. S. (2001). Financial Risk and Heavy Tails, Working Paper
- Cherubini, U., Luciano, E. and Vecchiato, W. (2004). Copula Methods in Finance, Wiley
- Danielsson, J. and de Vries, C. G. (1997a). Tail index and quantile estimation with very high frequency data, Journal of Empirical Finance, 4, 241-257 https://doi.org/10.1016/S0927-5398(97)00008-X
- Danielsson, J. and de Vries, C. G. (1997b). Value at Risk and extreme returns. In Extremes and Integrated Risk Management (ed. Embrechts, P.), 85-106, Risk Waters Group, London
- Embrechts, P., McNeil, A. J. and Straumann, D. (1999). Correlation: Pitfalls and Alternatives, Risk, 5, 69-71
- Embrechts, P., McNeil, A., Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls, Risk Management: Value at Risk and Beyond, ed. M.A.H. Dempster, Cambridge University Press, Cambridge, 176-223
- Embrechts, P., Lindskog, F., McNeil, A. (2003). Modelling Dependence with Copulas and Applications to Risk Management, Handbook of Heavy Tailed Distributions in Finance, ed. S. Rachev, Elsevier, Chapter 8, 329-384
- Embrechts, P., Kaufmann, R. and Patie, P. (2005). Strategic long-term financial risks: single risk factors, Computational Optimization and Applications 32, 61-90 https://doi.org/10.1007/s10589-005-2054-7
- Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180-190
- Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution, Annals of Statistics, 3, 1163-1173 https://doi.org/10.1214/aos/1176343247
- Hosking, J. R. M. and Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29, 339-349 https://doi.org/10.2307/1269343
- Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological events. Quarterly Journal of the Royal Meteorological Society, 81, 158-172 https://doi.org/10.1002/qj.49708134804
- Joe, H. (1997). Multivariate Models and Dependence Concepts, Chapman and Hall
- Joe, H. and Xu, J. J. (1996). The Estimation Method of Inference Functions for Margins for Multivariate Models, Dept. of Statistics, University of British Columbia, Tech. Rept. 166
- Longin, F. M. (1996). The asymptotic distribution of extreme stock market returns. Journal of Business, 69, 383-408 https://doi.org/10.1086/209695
- Longin, F. M. (2000). From Value at Risk to stress testing: The extreme value approach. The Journal of Banking and Finance, 24, 1097-1130 https://doi.org/10.1016/S0378-4266(99)00077-1
- McNeil, A. J. and Frey, R. (2000). Estimation of tail-related risk for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7, 271-300 https://doi.org/10.1016/S0927-5398(00)00012-8
- Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 3, 119-131 https://doi.org/10.1214/aos/1176343003
- Sklar, A. (1959). Fonctions de repartition a n dimensions et leurs marges, Publications de l'Institut de Statistique de l'Universite de Paris, 8, 229-231
- von Mises, R. (1936). La distribution de la plus grande de n valeurs. Rev. Math. Union Interbalcanique, 1, 141-160
- Reproduced in Selected Papers of Richard von Mises. American Mathematical Society(1964), 2, 271-294
- Yeo, S. C. (2006). Performance Analysis of VaR and ES based on Extreme Value Theory, The Korean Communications in Statistics, 13, 389-407 https://doi.org/10.5351/CKSS.2006.13.2.389
피인용 문헌
- VaR Estimation with Multiple Copula Functions vol.24, pp.5, 2011, https://doi.org/10.5351/KJAS.2011.24.5.809
- Performance analysis of EVT-GARCH-Copula models for estimating portfolio Value at Risk vol.29, pp.4, 2016, https://doi.org/10.5351/KJAS.2016.29.4.753