DOI QR코드

DOI QR Code

Estimation and Performance Analysis of Risk Measures using Copula and Extreme Value Theory

코퓰러과 극단치이론을 이용한 위험척도의 추정 및 성과분석

  • Yeo, Sung-Chil (Department of Applied Statistics, Konkuk University)
  • 여성칠 (건국대학교 상경대학 응용통계학과)
  • Published : 2006.11.30

Abstract

VaR, a tail-related risk measure is now widely used as a tool for a measurement and a management of financial risks. For more accurate measurement of VaR, recently we are particularly concerned about the approach based on extreme value theory rather than the traditional method based on the assumption of normal distribution. However, many studies about the approaches using extreme value theory was done only for the univariate case. In this paper, we discuss portfolio risk measurements with modelling multivariate extreme value distributions by combining copulas and extreme value theory. We also discuss the estimation of ES together with VaR as portfolio risk measures. Finally, we investigate the relative superiority of EVT-copula approach than variance-covariance method through the back-testing of an empirical data.

금융위험의 측정 및 관리를 위한 도구로서 분포의 꼬리 부분과 관련한 위험척도로 VaR가 현재 널리 활용되고 있다. 특히 VaR의 정확한 추정을 위해 정규분포를 가정한 기존의 방법보다는 극단치이론을 이용한 방법이 최근 관심을 끌고 있다. 지금까지 극단치이론을 이용한VaR의 추정에 관한 연구는 대부분 단변량의 경우에 대해 이루어졌다. 본 논문에서는 코퓰러를 극단치이론에 결부시켜 다변량 극단치분포를 모형화하여 포트폴리오 위험측정을 다루고 있다. 특히 본 연구에서는 포트폴리오 위험 척도로 VaR와 더불어 ES에 대한 추정 방법도 함께 논의하였다. 포트폴리오 위험측정을 위한 방법으로 본 논문에서 논의한 코퓰러-극단치이론에 의한 접근방법이 기존의 분산-공분산 방법보다 상대적으로 우수한지를 실증자료에 대한 사후검증을 통해 살펴보았다.

Keywords

References

  1. Artzner, P., Delbaen, F., Eber, J. M. and Heath, D. (1999). Coherent Measures of Risk, Mathematical Finance, 9, 203-228 https://doi.org/10.1111/1467-9965.00068
  2. Balkema, A. A. and de Haan, L. (1974). Residual lifetime at great age. Annals of Probability, 2, 792-804 https://doi.org/10.1214/aop/1176996548
  3. Berkowitz, J. and O'Brien, J.( 2002). How accurate are Value-at-Risk models at commercial banks? Journal of Finance, 57, 1093-1112 https://doi.org/10.1111/1540-6261.00455
  4. Boyue, E., Durrleman, V., Nickeghbail, A., Riboulet, G. and Roncalli, T. (2000). Copula for Finance - A Reading Guide and Some Application, Working Paper
  5. Bradley, B. O. and Taqqu, M. S. (2001). Financial Risk and Heavy Tails, Working Paper
  6. Cherubini, U., Luciano, E. and Vecchiato, W. (2004). Copula Methods in Finance, Wiley
  7. Danielsson, J. and de Vries, C. G. (1997a). Tail index and quantile estimation with very high frequency data, Journal of Empirical Finance, 4, 241-257 https://doi.org/10.1016/S0927-5398(97)00008-X
  8. Danielsson, J. and de Vries, C. G. (1997b). Value at Risk and extreme returns. In Extremes and Integrated Risk Management (ed. Embrechts, P.), 85-106, Risk Waters Group, London
  9. Embrechts, P., McNeil, A. J. and Straumann, D. (1999). Correlation: Pitfalls and Alternatives, Risk, 5, 69-71
  10. Embrechts, P., McNeil, A., Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls, Risk Management: Value at Risk and Beyond, ed. M.A.H. Dempster, Cambridge University Press, Cambridge, 176-223
  11. Embrechts, P., Lindskog, F., McNeil, A. (2003). Modelling Dependence with Copulas and Applications to Risk Management, Handbook of Heavy Tailed Distributions in Finance, ed. S. Rachev, Elsevier, Chapter 8, 329-384
  12. Embrechts, P., Kaufmann, R. and Patie, P. (2005). Strategic long-term financial risks: single risk factors, Computational Optimization and Applications 32, 61-90 https://doi.org/10.1007/s10589-005-2054-7
  13. Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180-190
  14. Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution, Annals of Statistics, 3, 1163-1173 https://doi.org/10.1214/aos/1176343247
  15. Hosking, J. R. M. and Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29, 339-349 https://doi.org/10.2307/1269343
  16. Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological events. Quarterly Journal of the Royal Meteorological Society, 81, 158-172 https://doi.org/10.1002/qj.49708134804
  17. Joe, H. (1997). Multivariate Models and Dependence Concepts, Chapman and Hall
  18. Joe, H. and Xu, J. J. (1996). The Estimation Method of Inference Functions for Margins for Multivariate Models, Dept. of Statistics, University of British Columbia, Tech. Rept. 166
  19. Longin, F. M. (1996). The asymptotic distribution of extreme stock market returns. Journal of Business, 69, 383-408 https://doi.org/10.1086/209695
  20. Longin, F. M. (2000). From Value at Risk to stress testing: The extreme value approach. The Journal of Banking and Finance, 24, 1097-1130 https://doi.org/10.1016/S0378-4266(99)00077-1
  21. McNeil, A. J. and Frey, R. (2000). Estimation of tail-related risk for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7, 271-300 https://doi.org/10.1016/S0927-5398(00)00012-8
  22. Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 3, 119-131 https://doi.org/10.1214/aos/1176343003
  23. Sklar, A. (1959). Fonctions de repartition a n dimensions et leurs marges, Publications de l'Institut de Statistique de l'Universite de Paris, 8, 229-231
  24. von Mises, R. (1936). La distribution de la plus grande de n valeurs. Rev. Math. Union Interbalcanique, 1, 141-160
  25. Reproduced in Selected Papers of Richard von Mises. American Mathematical Society(1964), 2, 271-294
  26. Yeo, S. C. (2006). Performance Analysis of VaR and ES based on Extreme Value Theory, The Korean Communications in Statistics, 13, 389-407 https://doi.org/10.5351/CKSS.2006.13.2.389

Cited by

  1. VaR Estimation with Multiple Copula Functions vol.24, pp.5, 2011, https://doi.org/10.5351/KJAS.2011.24.5.809
  2. Performance analysis of EVT-GARCH-Copula models for estimating portfolio Value at Risk vol.29, pp.4, 2016, https://doi.org/10.5351/KJAS.2016.29.4.753