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1. Introduction

Retrial queueing systems are considered to be good
mathematical models for many telecommunication networks
such as telephone switching systems, cellular mobile net-
works, local area networks under the protocols of random
~ multiple access, etc. Good overviews of research on retrial
queues can be found in the book [5] and survey [1]

Overwhelming majority of publicztions is devoted to re-
trial queues with the stationary Poisson input flow. But
such a flow does not catch the typical features of traffic
in modern telecommunication networks such as correlation
and burstiness.

To the present day, the BMAP (Batch Markovian Arrival
Process)(see, e.g., [9]) is the most popular mathematical
model for correlated group traffic. One of the first inves-

tigated queueing models is Erlang loss model-the queue of
the M/M/N/O type. It is used as a background for decision
making in telephone systems until now. In this model, the
arriving customer who finds all servers are busy upon ar-
rival leaves the system forever without the service. It is
considered be lost. Because the behavior of the users of
telephone networks is different from the assumed in Erlang
loss model (the user can try to initiate the call a little bit
later), retrial queueing models, which are characterized by
the fact that the rejected call does not leave the system
forever, but try the luck after some random time, are in-
vestigated intensively.

If the queueing model has &N 22 gervers, finite buffer
(or the buffer is absent at all) and the batch arrivals are
possible, situations can occur when the number of free
servers at the arriv,z;l epoch is less than the number of cus-
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tomers in the arriving batch. Different strategies of custom-
ers admission can be exploited. Here we analyze the fol-
lowing variant. If the arriving batch meets all servers be
busy, it leaves the system forever without effecting on the
system behavior. However, if at least one server is idle,
the batch is admitted into the system. If the number of
available servers is sufficient to serve all customers of a
batch, the service starts immediately. In opposite case, a
part of the customers start the service while the rest goes
to so called orbit and try to get service later on. So, the
considered model combines features of retrial and loss
models. To the best of our knowledge, such models were
in the context of the

not considered yet, at least

BMAP/PH/N type model.

2. The Mathematical Model

The service device consists of N parallel identical
servers. Service time distribution is of PH type. It means
the following. The service process is directed by the con-
tinuous time Markov process ", t>0. The state of this
process at the service beginning epoch is defined according

to the probabilistic row-vector 2=(ﬁ,,-~,ﬂM). Further, tran-

sitions of the process "::!20are defined by the matrix S
of dimension M xM . The diagonal entries of the matrix

are negative and ~Smmdefines the parameter of the ex-
ponentially distributed sojourn time of the process in the

state m’|vam|<°°’m:1’M . The non-diagonal entries of the

matrix S define the intensities of transitions of the process

M

= S

m,t20 in the state space {L.-»M}. The value 4= de-

fines the intensity of the transition of the process "»/20
from the state minto the absorbing state. The epoch of the
transition of the process /20 into the absorbing state

defines the service completion epoch. Denote So =-Se,
Here and below e is a column-vector of appropriate size
consisting of unmits. It is assumed that all the entries of the
column-vector S, are non-negative and at least one of
them is positive. The mean service time & is calculated as
b =p(-S)"e

The primary customers arrive to the system according to
a BMAP (Batch Markovian Arrival Process). The notion of

of

the BMAP and its is
D.Lucantoni in [9].
found in [3].

BMAP by vi-120, The state space of the irreducible con-

detailed description given by
Overview of related papers can be

We denote the directing process of the

tinuous time Markov chain ¥ is {O.L....7}. As follows
from [9], the behavior of the BMAP is characterized completely

<1

. The

. . . D()=%'D,z*,
by the matrix generating function @) kz;; S

matrix D: characterizes the intensities of transitions of the

process V20 which are accompanied by generating a
batch of k customers, kx>0. The matrix 2() represents
the generator of the process Yi»!20. The average arrival
rate 4 is defined as 2=60D'(Ne where @is the invariant
vector of the stationary distribution of Y, #+>0. The vector
6 is the unique solution to the system 6D(1)=0,0e=1,
Here 0 is the row-vector of appropriate size consisting of
zZeroes.

If all servers and busy at the epoch of a batch arrival,
the batch is not admitted into the system and is considered
be lost. If the number of idle servers is greater than the
batch size, all arrived customers start the service and leave
the system after its completion. If the batch size is bigger
than the number of available servers, only a part of cus-
tomers corresponding to a number of free servers starts
processing while the rest moves to the orbit. Concerning
the retrial process, we suppose that the inter-retrial times
are exponentially distributed with the rate @ which depend
on the current number / of customers on the orbit. We assume

that @: approaches to infinity when i — . As a special case

linear repeated requests (& =ia+y,a>0,y20,i>1) can be
handled.

3. Analysis of System Behavior

Let i be the number of calls on the orbit, & 20, # be
the number of busy servers, # =0,N,m” be the state of

the directing process of the service on the J”busy server,

m?” =1,M,j=ln, (we assume here that the busy servers
are numerated in order of their occupying, i.e. the server,
which begins service, is appointed the maximal number

among all busy servers; when some server finishes the
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service, the servers are correspondingly enumerated), ¥: be

the state of the directing process of the BMAP, v, =0/,

at the epoch %72 0.

Consider the multi-dimensional process

& =Gpnyvm?,.,m"), 120, 1t is easy to see that this

process is an irreducible Markov chain. Denote the sta-
tionary probabilities of this process
p(i,n,v,m™,...,m")

=lim Py, =in, =ny, =v,m” =m",..,m" =m"}
=300

for i20,v=0,W,m" =1,M,j=1n, and n=0,N.

Enumerate the states of the chain /20, in lexico-

graphic order and form the row-vectors P: of the sta-
tionary-state probabilities p(,n,v,m",...,m™), having di-

_ MN+1

K=+ ,iz0
1-M

mensionality " Define also the in-

finite-dimensional probability vector B=(BoB1 ).

Lemma. If the in vector Pexists then it satisfies the equili-

brium equation

where 0 is the infinite row-vector consisting of zeroes and

the matrix A is the infinitesimal generator of the chain

6120, and has the following structure:

AOO AOI A02 A03
AIO Al 1 A] 2 AIS
A= Ay Ay Ay e[ 3)

o

(]
S
&

where the blocks 4 of size KxK have the following

Jorm:

0 I,Qp 0 0
0 0 I, ®8 - 0
4,,=q : : T P (4)
0 0 0 IWM"-‘®/8
0 0 0 0

0 Dk+N®ﬂ®N
0 0 Dy ®1, ®ﬂ®(N_l)
Q(N-2)
A = 0 0 Din2®Ly ®f N/ 2-3 ETTTTTTTRToT )
0 0 D,,®I,. ®p
0 - 0 0
0, F<r-Lr=2,N
I; ®SY, r=r-Lr=LN
®r r
(4, =P OS5l r=nr=0Nl 6
D,®S*™ +Y D, ®I ., r'=r=N
k=1
D,®I,®p%, r=r+lI=L,LN-r,r=0,N-1

Lr=N,
Here " _{O,r:ﬁN , is Kronecker's symbol, ® is the sign

of Kronecker's product, and @ is the sign of Kronecker's

def def
®1
=4®..88,[>21 g% def
sum. B =p 1 B ’s S®I®S, 121, 520,

o % &
5, =31,.88®I

Ml—m—l
m=0 b

I2LW=W+1, I, and 0, de-
note the identity matrix and zero matrix correspondingly of
size LXL. 1,0 =1 1t is easy to see that the generator A of

the Markov chain %720, differs from the corresponding
generator of the analogous Markov chain for the
BMAP/PH/N retrial system, which was investigated in [2],
only with the last block entry of the last row of the ma-
trix 4 and the entry (4w . So, technique of [2] can be
effectively exploited to investigate the considered system.

It means the following. Instead of investigating the con-
tinuous-time Markov chain 4-/20, we deal with the dis-
crete-time Markov chain has one-step of the Markov chain
¢»120 transitions. This discrete-time Markov chain has
one-step transition probability matrix which is obtained
from the generator A by dividing entries of each its row
by the modulus of the corresponding diagonal entry and
adding 1 to the diagonal entry.

4. Stability Condition
By analogy with [2], we can show that this discrete-time
Markov chain belongs to the class of the so-called asymp-

totically quasi-toeplitz Markov chains introduced in [6].

Theorem 1. Steady-state distribution of the considered queue-
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ing system(as well as the stationary dis-
tribution of both considered continuous and
discrete tine Markov chains) exists for all val-

ues of the system parameters.

The outline of the proof is the following. As follows
from [6], stationary state distribution of the asymptotically
quasi-toeplitz Markov chain exists if the stationary state
distribution of its limiting quasi-toeplitz Markov chain
exists. The limiting quasi-toeplitz Markov chain is charac-
terized (see [4], [6]) by the matrix generating function of

one-step transition probabilities Y(2) that here has the fol-

lowing form:
0 I; 88 0 .. 0 0
0 0 L,®F .. 0 0
f(z)= HE o : :
0 0 0 OWM”"JM”" ] 7 % ®ﬂ
0 0 0 . CHI, @8z C2(DYD ™)+ 20

where the diagonal matrix C has the diagonal entries co-
inciding with the modulus of the corresponding entries of

the matrix D(1)®S®",
It can be verified that the matrix Y(z) is reducible and
the unique irreducible block of this matrix is the matrix

Y(2) having the following form:

Py [c*z(z;a) ® ;“’N) +zl C'(;® sg"”)z]
MmN ﬁ OWMN"XWMN"

Then, according the results from [4], sufficient condition
of the stationary distribution existence for the Markov
chains under consideration is the fulfillment of the con-
dition:

.......................................

(det(zI —¥ @] >0

Taking into account the block structure of the matrix

Y(z), the determinant in (7) can be transformed to the

form:

det(z] — ¥(2)) = (det C™)z"*"" det T(z)

of

where
T(z)

~2(DN®S®)~ (I ® SV U0 ® B)

Differentiating (8) at the point Z=1, we can show that
condition (7) is equivalent to inequality

(detT(2))]

>0

.............................................

Decomposing the determinant of T (z) in the entries of
ant column, it can be shown that inequality (9) is equiv-
alent to inequality

i(l; ®5%)e<0

Where the vector X is the unique solution to the follow-
ing system of linear algebraic equations

.........................................

¥T(1)=0, ¥e=1

By direct substitution, it can be shown that solution of
system (11) has a form

where the vector Vis the unique positive solution to the
following system of linear algebraic equations:

;}(SeaN + S(;BN(IWMN_l ®ﬂ))= 6, Pe=1 ererieieeunnninns (13)

Substituting (12) into (10), we get inequality

FEPN e < rurerrnrnerennnee it (14)
It follows from (13) that (14) is equivalent to

)‘,S;BN (]WMN*] @ B)e >0 cenreceraeaenninnneniiiiniinianen, (15)
Because vector Fis positive while the matrix

SN Ty ® B) s non-negative and non-zero, we conclude
that inequality (15) is fulfilled any values of the system
parameters. Theorem 1 is proven.
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5. Algorithm for Calculation of the Stat-
ionary Distribution and Loss Proba-
bility

The algorithm for calculation of the stationary probability
vectors 2:-120 is the same as one elaborated in [2]. One
of the most important characteristics of the considered
model is the probability Fiss that arbitrary customer is lost
in the system.

Theorem 2. Loss probability Fusin the case of completion
admission discipline is calculated as follows

where D’ =D, ®1I, k21i20.

The outline of the proof is the following. According to

a formula of the total probability, the loss probability Fus
is calculated as

N-l =

P :1‘223{ pl_<’<)R<"v’f> ................................ (17)

i=0 k=l

where £ is a probability that an arbitrary customers ar-

rives in a batch consisting of k customers, PY s a
probability to see i servers being busy at the epoch of the
k size batch arrival, R"® is a probability that an arbitrary
customer will not be loss conditional it arrives in a batch
consisting of k& customers and / servers are busy at the
arrival epoch. It can be shown that

By substituting (18) - (20) into (17) after some algebra
we get (16). Theorem 2 is proven.

6. Numerical Examples

We assume that the PH service process is characterized
by the vector £ =(0.2,0.8) and the matrix

-1, 05
S=
0.5, ~2

Average intensity of the service is equal to 1. 029412.
Squared coefficient of the service time variation is equal to
1.3183391. Consider the MAP input which is characterized
by the matrices

—25.53984, 0.393329, 0.361199
Dy=| 0.14515, —-2.2322, 0.200007 | ceeeecenneene 2n
0.295961, 0.3874445, —1.752618

2424212, 0.466868, 0.076323
D =D=| 0.034097, 1.666864, 0.186082 |--ccoeveusee (22)
0.009046, 0.255481, 0.804685

This MAP has the fundamental rate A=5. In opposite to
the BMAP, in a MAP customers cannotarrive in batches.
So in case of the MAP, the values of the loss probability
coincide for all three considered admission disciplines.
Basing on the described MAP introduce two BMAPs that
will be coded below as the BMAP*5 and BMAP*10. The

BMAP*K is defined by matrices Di k=0,K . To build

5 DH 2z . . .
P_(k):pka IO N L, k2L vererrrreeersrunensannnns (18) these matrices, we follow such a way. First, the matrix Do
oD,e is fixed by formula (21) and the rest of the matrices are
o L LAY gy colulates as D,=Dg"'(1-)/(l-q*), k=LK, where the
Q;ID,E matrix D is fixed in (22), K=510, After such a con-
<Table1> Loss Probability Fi.according to Kand N with ¢ =0.8
K\N 1 2 3 4 5 6 7 8
BMAP*S 0.84936 0.75005 0.67903 0.62154 0.55167 0.51921 0.47136 0.44083
BMAP*10 0.86315 0.77316 0.69016 0.63891 0.58368 0.54101 0.49009 0.45817
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struction, we normalize all the matrices Di k=0,K o get
the BMAP having the same fundamental rate as the initial
MAP. The table 1 show the dependence of the loss proba-

bility Fuson the numbers servers N for the input flows
BMAP*5 and BMAP*I0 correspondingly for fixed PH serv-
ice process and ¢ =038,

In the further experiments we consider three PH service

processes. The process coded as PHo is defined by A =1 and
§=~1. This process corresponds to a usual exponential
service -time. The process coded as PH, is defined by the vec-

Sz(-loooo, 0 )
tor £=(098,0.02) and matrix 0, -0.02000196 .
This process corresponds to the hyper-exponential service

time distribution. The process coded as PH, is defined by
-2, 2

the vector #=0,0) and matrix :( 0, —2}. It means

that the service time has Erlangian distribution of order 2.

Al these PH service processes are characterized by the

mean service time equal to one. Also it shows the depend-

ence of the loss probability Fis for PH service processes.

7. Conclusion

This paper investigates the mathematical model of mul-
ti-server retrial queuveing system with the Batch Markovian
Arrival Process, the Phase type service distribution and the
finite buffer. The sufficient condition for the steady dis-
tribution existence and the algorithm for calculating this
distribution are presented. The presented results give a
straightforward algorithmic way for calculation of perform-
ance measures of the considered BMAP model. Also the
considered model combines features of retrial and loss
models. The results can be extended to the case of another
disciplines. For example, the following disciplines, which
occur in different real life systems, can be accounted.
Finally, a formula to solve loss probability in the case of
complete admission discipline is derived and numerical re-
sults are obtained.
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