Characterization of Naphthalene-Degrading Pseudomonas Species Isolated from Pollutant-Contaminated Sites: Oxidative Stress During their Growth on Naphthalene

  • Kang, Yoon-Suk (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Young-Jun (Department of Food and Biotechnology, Korea University) ;
  • Jeon, Che-Ok (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Park, Woo-Jun (Division of Environmental Science and Ecological Engineering, Korea University)
  • Published : 2006.11.30

Abstract

Four naphthalene-degrading bacteria (Pseudomonas sp. strains O1, W1, As1, and G1) were isolated feom pollutant-contaminated sites. Examination of their substrate utilization and analyses of key naphthalene-catabolic regulatory genes revealed that the pathway and regulation of naphthalene-degradation in all four strains resemble those of NAH7 from P. putida G7. Superoxide anion production, superoxide dismutase activity, and catalase activity during their growth on naphthalene-amended medium increased significantly, compared with those with glucose-amended medium. Addition of ascorbate, an antioxidant, or ferrous iron ($Fe^{2+}$) increased the growth rates of all tested microorganisms on naphthalene. Northern blot and HPLC analyses showed that both nahA gene expression and naphthalene degradation increased under those conditions. Our data suggest that naphthalene degradation can impose severe oxidative stress, and defenses against oxidative stress would play an important role in the metabolism of naphthalene.

Keywords

References

  1. Ahn, I. S., W. C. Ghiorse, L. W. Lion, and M. L. Shuler. 1998. Growth kinetics of Pseudomonas putida G7 on naphthalene and occurrence of naphthalene toxicity during nutrient deprivation. Biotechnol. Bioeng. 59: 587-594 https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<587::AID-BIT9>3.0.CO;2-6
  2. Andersen, S. M., K. Johnsen, J. Sorensen, P. Nielsen, and C. S. Jacobsen. 2000. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. Int. J. Syst. Evol. Microbiol. 50: 1957-1964 https://doi.org/10.1099/00207713-50-6-1957
  3. Beers, Jr. R. F. and I. W. Sizer. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140
  4. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276-287 https://doi.org/10.1016/0003-2697(71)90370-8
  5. Benov, L. and I. Fridovich. 1998. Growth in iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron superoxide dismutase. J. Biol. Chem. 273: 10313-10316 https://doi.org/10.1074/jbc.273.17.10313
  6. Bosch, R., E. Garcia-Valdes, and E. R. Moore. 2000. Complete nucleotide sequence and evolutionary implications of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene 236: 65-74
  7. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  8. Burlage, R. S., G. S. Sayler, and F. Larimer. 1990. Monitoring naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions. J. Bacteriol. 172: 4749-4757 https://doi.org/10.1128/jb.172.9.4749-4757.1990
  9. Eaton, R. W. 1994. Organization and evolution of naphthalene catabolic pathways: Sequence of the DNA encoding 2-hydroxy-chromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid. J. Bacteriol. 176: 7757-7762 https://doi.org/10.1128/jb.176.24.7757-7762.1994
  10. Fereira, F. and N. A. Straus. 1994. Iron deprivation. J. Appl. Phycol. 6: 199-210 https://doi.org/10.1007/BF02186073
  11. Garcia, E. M., I. G. Siegert, and P. Suarez. 1998. Toxicity assay and naphthalene utilization by natural bacteria selected in marine environments. Bull. Environ. Contam. Toxicol. 61: 370-377 https://doi.org/10.1007/s001289900772
  12. Greene, J. F., J. Zheng, D. F. Grant, and B. D. Hammock. 2000. Cytotoxicity of 1,2-epoxynapthalene is correlated with protein binding and in situ glutathione depletion in cytochrome P4501A1 expressing Sf-21 cells. Toxicol. Sci. 53: 352-360 https://doi.org/10.1093/toxsci/53.2.352
  13. Imlay, J. A. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57: 395-418 https://doi.org/10.1146/annurev.micro.57.030502.090938
  14. Imaly, J. A. and S. Linn. 1987. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J. Bacteriol. 169: 2967-2976 https://doi.org/10.1128/jb.169.7.2967-2976.1987
  15. Jeon, C. O., W. Park, W. C. Ghiorese, and E. L. Masden. 2004. Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int. J. Sys. Evol. Microbiol. 54: 93-97 https://doi.org/10.1099/ijs.0.02636-0
  16. Jones, R. M., B. Britt-Compton, and P. A. Williams. 2003. The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are an operon that is regulated by NagR, a LysR-type transcriptional regulator. J. Bacteriol. 185: 5847-5853 https://doi.org/10.1128/JB.185.19.5847-5853.2003
  17. Kahng, H. Y. and K. P. Nam. 2002. Molecular characteristics of Pseudomonas rhodesiae strain KK1 in response to phenanthrene. J. Microbiol. Biotechnol. 12: 729-734
  18. Karlsson, A., J. V. Parales, R. E. Parales, D. T. Gibson, H. Eklund, and S. Ramaswamy. 2003. Crystal structure of naphthalene dioxygenase: Side-on binding of dioxygen to iron. Science 299: 1039-1042 https://doi.org/10.1126/science.1078020
  19. Kim, Y. C., C. D. Miller, and A. J. Anderson. 1999. Transcriptional regulation by iron of genes encoding iron-and manganese-superoxide dismutases from Pseudomonas putida. Gene 239: 129-135 https://doi.org/10.1016/S0378-1119(99)00369-8
  20. Krayl, M., D. Benndorf, N. Loffhagen, and W. Babel. 2003. Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 3: 1544-1552 https://doi.org/10.1002/pmic.200300477
  21. Latifi, A., R. Jeanjean, S. Lemeille, M. Havaux, and C.-C. Zhang. 2005. Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J. Bacteriol. 187: 6596-6598 https://doi.org/10.1128/JB.187.18.6596-6598.2005
  22. Lee, D. S., M. W. Lee, S. H. Woo, and J. M. Park. 2005. Effects of salicylate and glucose on biodegradation of phenanthrene by Burkholderia cepacia PM07. J. Microbiol. Biotechnol. 15: 859-865
  23. Lee, Y.-D., B.-Y. Moon, J.-P. Choi, H.-G. Chang, B.-S. Noh, and J.-H. Park. 2005. Isolation, identification, and characterization of aero-adaptive Campylobacter jejuni. J. Microbiol. Biotechnol. 15: 992-1000
  24. Lee, Y., S. Pena-Llopis, Y. S. Kang, H. D. Shin, B. Demple, E. L. Madsen, C. O. Jeon, and W. Park. 2006. Expression analysis of the fpr (Ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440. Biochem. Biophys. Res. Commun. 339: 1246-1254 https://doi.org/10.1016/j.bbrc.2005.11.135
  25. Manohar, S., C. K. Kim, and T. B. Karegouder. 1999. Production of salicylic acid from naphthalene by immobilized Pseudomonas sp. strain NGK1. J. Microbiol. Biotechnol. 9: 482-487
  26. McConmick, M. L., G. R. Buettner, and B. E. Britigan. 1998. Endogenous superoxide dismutase levels regulate iron-dependent hydroxyl radical formation in Escherichia coli exposed to hydrogen peroxide. J. Bacteriol. 180: 622-625
  27. Park, W., P. Padmanabhan, S. Padmanabhan, G. J. Zylstra, and E. L. Madsen. 2002. nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA. Microbiology 148: 2319-2329 https://doi.org/10.1099/00221287-148-8-2319
  28. Park, W., C. O. Jeon, and E. L. Madsen. 2002. Interaction of NahR, a LysR-type transcriptional regulator, with the ${\alpha}$-subunit of RNA polymerase in the naphthalene degrading bacterium, Pseudomonas putida NCIB 9816-4. FEMS Microbiol. Lett. 213: 59-165
  29. Park, W., C. O. Jeon, H. Cadillo, C. DeRito, and E. L. Madsen. 2004. Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: Toxicity of naphthalene and its metabolites. Appl. Microbiol. Biotechnol. 64: 429-435 https://doi.org/10.1007/s00253-003-1420-6
  30. Price, C. T. D., I. R. Lee, and J. E. Gustafson. 2000. The effects of salicylate on bacteria. Int. J. Biochem. Cell Biol. 32: 1029-1043 https://doi.org/10.1016/S1357-2725(00)00042-X
  31. Santos, P. M., D. Benndorf, and I. Sa-Correia. 2004. Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4: 2640-2652 https://doi.org/10.1002/pmic.200300793
  32. Schell, M. A., P. H. Brown, and S. Raju. 1990. Use of saturation mutagenesis to localize probable functional domain in the NahR protein, a LysR-type transcriptional activator. J. Biol. Chem. 265: 3844-3850
  33. Stanier, R. Y., N. J. Palleroni, and M. Dudorhoff. 1966. The aerobic pseudomonads: A taxonomic study. J. Gen. Microbiol. 43: 159-271 https://doi.org/10.1099/00221287-43-2-159
  34. Stohs, S. J., S. Ohia, and D. Bagchi. 2002. Naphthalene toxicity and antioxidant nutrients. Toxicology 180: 97-105 https://doi.org/10.1016/S0300-483X(02)00384-0
  35. Wilson, M. S., C. Bakermans, and E. L. Madsen. 1999. In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl. Environ. Microbiol. 65: 80-87
  36. Yen, K. M. and C. M. Serdar. 1988. Genetics of napthalene catabolism in pseudomonads. CRC Crit. Rev. Microbiol. 15: 247-268 https://doi.org/10.3109/10408418809104459
  37. Zhou, N.-Y., S. L. Fuenmayor, and P. A. Williams. 2001. nag Genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J. Bacteriol. 183: 700-708 https://doi.org/10.1128/JB.183.2.700-708.2001
  38. Zylstra, G. J. and J. J. Dennis. 2004. Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene genetic organization of pDTG1, the 83 kilobase naphthalene 9816-4. J. Mol. Biol. 341: 753-768 https://doi.org/10.1016/j.jmb.2004.06.034