Cloning and Site-Directed Mutagenesis of Musca domestica Acetylcholinesterase for Enhancing Sensitivity to Organophosphorus and Carbamate Insecticides

  • Kim, Chung-Sei (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Su-Il (Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Published : 2006.11.30

Abstract

Mature acetylcholinesterase (AChE) gene (gm, 1,836 bp) was cloned from the housefly and successfully expressed in the E. coli CodonPlus (DE3) RIL system (GM-E, 72 kDa) with a yield of 1,630 mU/g fresh cells. Using the gm, 10 kinds of mutants were constructed and expressed for enhancing sensitivity to insecticides. The sensitivity of these mutants to five kinds of organophosphate (OP) and three carbamate insecticides was investigated by measuring the apparent bimolecular inhibition constant ($k_i=k_2/K_d$). Surprisingly, the sensitivity of quadruple mutant IGFT was enhanced as much as 7-fold for acephate, 164-fold for demeton-S-methyl, 484-fold for dichlorvos, 523-fold for edifenphos, 30-fold for ethoprophos, 30-fold for benfuracarb, 404-fold for carbaryl, and 107-fold for furathiocarb, compared with that of GM-E, although the sensitivity of each single point mutant was slightly increased. These mutational studies indicated that (i) contradictory to Walsh et al. [39], the residue 327 is the important key residue for enhancing sensitivity as much as the residue 262, (ii) the residue 82 and additional residues of 234, 236, and 585 are also important, and (iii) sensitivity was cooperatively accelerated as the number of strategic mutations increased.

Keywords

References

  1. Bachmann, T. T. and R. D. Schmid. 1999. A disposable, multielectrode biosensor for rapid simultaneous detection of the insecticides paraoxon and carbofuran at high resolution. Analyt. Chim. Acta 401: 95-103 https://doi.org/10.1016/S0003-2670(99)00513-9
  2. Cuatrecasas, P. 1970. Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J. Biol. Chem. 245: 3059-3065
  3. Cuatrecasas, P. and D. B. Anfinsen. 1979. Methods in Enzymology, vol. 21, Academic Press, New York
  4. Cuatrecasas, P., M. Wilcheck, and D. B. Anfinsen. 1968. Selective enzyme purification by affinity chromatography. Proc. Natl. Acad. Sci. USA 61: 636-643
  5. Devonshire, A. L., F. J. Byrne, G. D. Moores, and M. S. Williamson. 1998. Biochemical and molecular characterization of insecticide insensitive acetylcholinesterase in resistant insects, pp. 491-496. In B. P. Doctor et al. (eds.), Structure and Function of Cholinesterases and Related Proteins. Plenum, New York
  6. Eldefrawi, A. T. 1985. Acetylcholinesterase and anticholinesterases, pp. 115-130. In G. A. Kerkut, and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry, and Pharmacology, vol. 12. Pergamon Press, New York
  7. French-Constant, R. H., B. Pittendrigh, A. Vaughan, and N. Anthony. 1998. Why are there so few resistance-associated mutations in insecticide target genes? Philos. Trans. R. Soc. Lond. B Biol. Sci. 353: 1685-1693 https://doi.org/10.1098/rstb.1998.0319
  8. Gao, J.-R., S. Kambhampati, and K. Y. Zhu. 2002. Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene linkage. Insect Mol. Biol. 32: 765-775 https://doi.org/10.1016/S0965-1748(01)00159-X
  9. Gnagey, A. L., M. Forte, and T. L. Rosenberry. 1987. Isolation and characterization of acetylcholinesterase from Drosophila. J. Biol. Chem. 262: 13290-13298
  10. Hall, L. M. C. and P. Spierer. 1986. The ace locus of Drosophila melanogaster: Structural gene for acetylcholinesterase with an unusual 5' leader. EMBO J. 5: 2949-2954
  11. Harel, M., G. Kryger, T. L. Rosenberry, W. D. Mallender, T. Lewis, R. J. Fletcher, J. M. Guss, L. Silman, and J. L. Sussman. 2000. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci. 9: 1063-1072 https://doi.org/10.1110/ps.9.6.1063
  12. Hart, G. and R. D. O'Brien. 1973. Recording spectrophotometric method for determination of dissociation and phosphorylation constants for the inhibition of acetylcholinesterase by organophosphates in the presence of substrate. Biochemisty 12: 2940-2945 https://doi.org/10.1021/bi00739a026
  13. Heim, J., C. Schmidt-Dannert, H. Atomi, and R. D. Schmid. 1998. Functional expression of a mammalian acetylcholinesterase in Pichia pastoris: Comparison to acetylcholinesterase, expressed and reconstituted from Escherichia coli. Biochim. Biophys. Acta 1396: 306-319 https://doi.org/10.1016/S0167-4781(97)00196-6
  14. Holt, R. A. et al. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 124-149 https://doi.org/10.1126/science.1078167
  15. Huang, C. T. and W. C. Dauterman. 1973. Purification of fly head cholinesterase. Insect Biochem. 3: 325-334 https://doi.org/10.1016/0020-1790(73)90064-4
  16. Huang, Y., C. L. Qiao, M. S. Williamson, and A. L. Devonshire. 1997. Characterisation of the acetylcholinesterase gene from insecticide-resistant houseflies (Musca domestica). Chinese J. Biotech. 13: 177-183
  17. Kang, S. K., K. K. Cho, J. K. Ahn, S. H. Kang, K. H. Han, H. G. Lee, and Y. J. Choi. 2004. Cloning and expression of thermostable ${\beta}$-glycosidase gene from Thermus filiformis Wai33 A1 in Escherichia coli and enzyme characterization. J. Microbiol. Biotech. 14: 584-592
  18. Ke, S. H. and E. L. Madison. 1997. Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method. Nucleic Acids Res. 25: 3371-3372 https://doi.org/10.1093/nar/25.16.3371
  19. Kim, C.-S., W.-T. Kim, K.-S. Boo, and S.-I. Kim. 2003. Cloning, mutagenesis, and expression of the acetylcholinesterase gene from a strain of Musca domestica; the chnage from a drug-resistant to a sensitive enzyme. Mol. Cells 15: 208-215
  20. Kim, J.-H., H.-J. Kang, E.-S. Kim, J.-H. Kim, and Y.-M. Koo. 2004. One-step purification of poly-His tagged penicillin G acylase expressed in E. coli. J. Microbiol. Biotech. 14: 231-236 https://doi.org/10.1159/000080332
  21. Kim, K.-Y., B.-S. Koo, D. H. Jo, and S.-I. Kim. 2004. Cloning, expression, and purification of exoinulinase from Bacillus sp. snu-7. J. Microbiol. Biotech. 14: 344-349
  22. Kozaki, T., T. Shono, T. Tomita, and Y. Kono. 2001. Fenitroxon insensitive acetylcholinesterase of housefly, Musca domestica, associated with point mutations. Insect Biochem. Mol. Biol. 31: 991-997 https://doi.org/10.1016/S0965-1748(01)00047-9
  23. Li, F. and Z.-J. Han. 2002. Two different genes encoding acetylcholinesterase existing in cotton aphid (Aphis gossypii). Genome 45: 1134-1141 https://doi.org/10.1139/g02-085
  24. Malcolm, C. A., D. Bourguet, A. Ascolillo, S. J. Rooker, C. F. Garvey, L. M. C. Hall, N. Pasteur, and M. Raymond. 1998. A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens. Insect Mol. Biol. 7: 107-120 https://doi.org/10.1046/j.1365-2583.1998.72055.x
  25. Martin, A. R. and W. C. Dauterman. 1963. Determination of the bimolecular rate constant for the reaction between organophosphorus inhibitors and esterases in the presence of substrate. Nature 198: 551-553 https://doi.org/10.1038/198551a0
  26. Massoulie, J., L. Pezzementi, S. Bon, E. Krejci, and F. M. Vallette. 1993. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 41: 31-91 https://doi.org/10.1016/0301-0082(93)90040-Y
  27. Matsumura, F. 1985. Toxicology of Insecticides. Plenum Press, New York
  28. Mori, A., T. Tomita, O. Hidoh, Y. Kono, and D. W. Severson. 2001. Comparative linkage map development and identification of an autosomal locus for insensitive acetylcholinesterase-mediated insecticide resistance in Culex tritaeniorhynchus. Insect Mol. Biol. 10: 197-203 https://doi.org/10.1046/j.1365-2583.2001.00255.x
  29. Mutero, A., M. Pralavorio, J. M. Bride, and D. Fournier. 1994. Resistance associated point mutations in insecticide-insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. USA 91: 5922-5926
  30. Nabeshima, T., T. Kozaki, T. Tomita, and Y. Kono. 2003. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem. Biophys. Res. Commun. 307: 15-22 https://doi.org/10.1016/S0006-291X(03)01101-X
  31. Ren, X., Z. Han, and Y. Wang. 2002. Mechanism of monocrot-phos resistance in cotton bollworm, Helicoverpa armigera (Hübner). Arch. Insect Biochem. Physiol. 51: 103-110 https://doi.org/10.1002/arch.10054
  32. Riddles, P. W., R. L. Blakeley, and B. Zerner. 1983. Reassessment of Ellman's reagent. Meth. Enzymol. 91: 49-61 https://doi.org/10.1016/S0076-6879(83)91010-8
  33. Soreq, H. and H. Zakut. 1993. Human Cholinesterases and Anticholinesterases. Academic Press, San Diego
  34. Sussman, J. L., M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, and I. Silman. 1991. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science 253: 872-879 https://doi.org/10.1126/science.1678899
  35. Tomita, T., O. Hidoh, and Y. Kono. 2000. Absence of protein polymorphism attributable to insecticide-insensitivity of acetylcholinesterase in the green rice leafhopper, Nephotettix cincticeps. Insect Biochem. Mol. Biol. 30: 325-333 https://doi.org/10.1016/S0965-1748(00)00006-0
  36. Veil, S. 1992. Our Planet, Our Health. WHO Commission in Health and Environment, New York
  37. Villatte, F. and T. T. Bachmann. 2002. How many genes encode cholinesterase in arthropods? Pestic. Biochem. Physiol. 73: 122-129 https://doi.org/10.1016/S0048-3575(02)00002-0
  38. Vontas, J. G., M. J. Hejazi, N. J. Hawkes, N. Cosmidis, M. Loukas, and J. Hemingway. 2002. Resistance-associated point mutations of organophosphate acetylcholinesterase in the olive fruit fly Bactrocera oleae. Insect Mol. Biol. 11: 329-336 https://doi.org/10.1046/j.1365-2583.2002.00343.x
  39. Walsh, S. B., T. A. Dolden, G. D. Moores, M. Kristensen, T. Lewis, A. L. Devonshire, and M. S. Williamson. 2001. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J. 359: 175-181 https://doi.org/10.1042/0264-6021:3590175
  40. Weill, M., G. Lutfalla, K. Mogensen, F. Chandre, A. Berthomieu, C. Berticat, N. Pasteur, A. Philips, P. Fort, and M. Raymond. 2003. Insecticide resistance in mosquito vectors. Nature 423: 136-137
  41. Weill, M., P. Fort, A. Brengues, M.-P. Dubois, N. Pasteur, and M. Raymond. 2002. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc. R. Soc. London B 269: 2007-2016