고분자 반응에 의한 거의 완전 4차화된 폴리(4-비닐피리딘)의 합성 및 도데실 황산 소듐과의 응집 특성

Synthesis of Almost Fully Quavternized Poly(4-vinylpyridine)s by Polymer Reaction and Aggregation Property with Sodium Dodecyl Sulfate

  • 심후식 (금오공과대학교 고분자공학과) ;
  • 최이준 (금오공과대학교 고분자공학과) ;
  • 김용철 (금오공과대학교 고분자공학과) ;
  • 박일현 (금오공과대학교 고분자공학과)
  • Sim, Hoo-Sik (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Choi, E-Joon (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Young-Chul (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Park, Il-Hyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 발행 : 2006.11.30

초록

분자량이 다른 두 가지 폴리(4-비닐피리딘) (Mw=50 kg/mol 및 200 kg/mol)을 알킬기의 탄소수(m)를 변화시키면서 N-알킬화시켜 이온성 고분자를 합성하였다. 알킬화제로서 디메틸 설페이트(m=1) 및 브롬화 알칸(m=5, 8, 12, 16 및 22)을 사용하였다. 합성한 이온성 고분자의 조성은 NMR 분광분석법 및 원소분석법을 사용하여 결정하였다. 그 결과로써 거의 완전한 4차 알킬화 반응에 의해 전해질 고분자가 얻어졌음을 알 수 있었다. 합성한 전해질고분자의 수용액에 도데실 황산 소듐(SDS)을 첨가 시 발생되는 탁도 변화를 조사하여 임계응집농도(CAC)를 결정하였으며, 이러한 CAC가 고분자의 분자량, N-알킬기의 길이 및 NaCl의 농도 변화에 어떻게 의존하는가를 조사하였다. 결과로써 폴리(4-비닐피리딘)의 분자량이 클수록 또한 알킬 곁사슬의 길이가 길수록 더 적은 양의 SDS 첨가로도 응집체가 형성되었음을 알 수 있었다.

Quarternized poly(4-vinyl pyridine)s have been prepared by the reaction of poly (4-vinyl pyridine)s (Mw=50 kg/mol and 200 kg/mol) and alkylating agents varying the carbon numbers of the alkyl groups (m):dimethyl sulfate (m=1) as well as bromoalkane (m= 5, 8, 12, 16, and 22) was used as an alkylating agent. The degree of alkylation was determined by using an elemental analysis and NMR spectroscopy. As a result, polyelectrolytes were obtained by the almost full alkylation of poly (4-vinyl pyridine)s. The critical aggregation concentration (CAC) was determined by measuring the change of turbidity occurred by addition of sodium dodecyl sulfate (SDS) into aqueous solution of quarternized poly-(4-vinyl pyridine)s, and the dependence of molecular weight of polymer, the length of N-alkyl group and concentration of NaCl upon CAC was investigated. As a result, as the molecular weight or the length of alkyl group was increased, less amount of SDS Gould induce the aggregation.

키워드

참고문헌

  1. R. Jerome and M. Mazurek, lonomers, M. R. Tant, K. A. Mauritz, and G. L. Wilkes, Editors, Blackie Academic and Professional, London, Chap. 1, p. 3 (1997)
  2. H. Dautzenberg, W. Jaeger, J. Kotz, B. Philipp, Ch. Seidel, and D. Stscherbina, Polyelectrolytes, Hanser Publishers, Munich, Chap. 3, p. 112 (1994)
  3. S. Forster, M. Schmidt, and M. Antonietti, J. Phys. Chem., 96, 4008 (1992) https://doi.org/10.1021/j100189a019
  4. Y. Wang, K. Kozue, H. Qingrong, and L. D. Paul, Macromolecules, 32, 7128 (1999) https://doi.org/10.1021/ma990972v
  5. O. E. Philippova, D. Hourdet, R. Audebert, and A. R. Khokhlov, Macromolecules, 29, 2882 (1996)
  6. O. Anthony and R. Zana. Langmuir, 12, 1967 (1996) https://doi.org/10.1021/la950817j
  7. O. Anthony and R. Zana. Langmuir, 12, 3590 (1996) https://doi.org/10.1021/la960184o
  8. H. Okuzaki and Y Osada, Macromolecules, 28, 554 (1995)
  9. A. Ciferri, Macromol. Chem. Phys., 195, 457 (1994) https://doi.org/10.1002/macp.1994.021950207
  10. K. Hayakawa, J. P. Santerre, and J. C. Kwals, Mecromolecules. 16, 1642 (1983) https://doi.org/10.1021/ma00244a017
  11. X. Zheng and W. Cao, Eur. Polym. J., 37, 2259 (2001) https://doi.org/10.1016/S0014-3057(01)00111-2
  12. K. Esumi, K. Kuwabara, T. Chiba, F. Kobayashi, H. Mizutani, and K. Torigoe, Colloid Surface A, 197, 141 (2002) https://doi.org/10.1016/S0927-7757(01)00873-1
  13. F. R. Hallett, G. Riess, and M. D. Croucher, Macromolecules, 24, 87 (1991) https://doi.org/10.1021/ma00001a014
  14. Y. Li, P. L. Dubin, H. Dautzenberg, U. Luck, J. Hartmann, and Z. Tuzar, Macromolecules, 28, 6795 (1995) https://doi.org/10.1021/ma00124a014
  15. J. Xia, H. Zhang, D. R. Rigsbee, P. L. Dubin, and T. Shaikh, Macromolecules, 26, 2759 (1993) https://doi.org/10.1021/ma00063a019
  16. B. M. Folmer and B. Kronberg, Langmuir, 16, 5987 (2000) https://doi.org/10.1021/la991655k
  17. M. Wolszczak and J. Miller, J. Photochem. Photobio. A, 147, 45 (2002) https://doi.org/10.1016/S1010-6030(01)00611-6
  18. J. L. Mura, G. Riess, and M. D. Croucher, Macromolecules, 24, 1033 (1991) https://doi.org/10.1021/ma00005a010
  19. K. Kalyanasundaram and J. K. Thomos, J. Am. Chem. Soc., 99, 2039 (1977) https://doi.org/10.1021/ja00449a004
  20. I. Capek, Adv. Colloid Interf. Sci., 97, 91 (2002) https://doi.org/10.1016/S0001-8686(01)00049-5
  21. H. Ringsdorf, J. Venzmer, and F. M. Winnik, Macromolecules, 24, 1678 (1991) https://doi.org/10.1021/ma00007a034
  22. R. Tanaka, J. Meadows, P. A. Williams, and G. O. Phillips, Macromolecules, 25, 1304 (1992) https://doi.org/10.1021/ma00030a016
  23. B. Jonsson, B. Lindman, K. Holmberg, and B. Kronberg, Surfactants and Polymers in Aqueous Solutuon, John Wiley & Sons, U.K., Chap. 2 (1998)
  24. D. Navarro-Rodriguez, Y. Frere, and P. Gramain, Mackromol. Chem., 192, 2975 (1991) https://doi.org/10.1002/macp.1991.021921213
  25. D. NavarroRodriguez, D. Guillon, and A. Skoulios, Mackromol. Chem., 193, 3117 (1992) https://doi.org/10.1002/macp.1992.021931217
  26. Y-C. Kim, I. H. Park, H.-S. Sim, and E-J. Choi, Polymer (Korea), 28, 154 (2004)
  27. Y. Frere and P. Gramain, Macromolecules, 25, 3184 (1992) https://doi.org/10.1021/ma00038a026