DOI QR코드

DOI QR Code

Plant Biotechnology and Bioinformatics

식물 생명공학과 생물정보학

  • Kim, Jung-Eun (Plant Genome Research Center, Korea Research institute of Bioscience and Biotechnology) ;
  • Paik, Hyo-Jung (Plant Genome Research Center, Korea Research institute of Bioscience and Biotechnology) ;
  • Kim, Young-Cheol (Plant Genome Research Center, Korea Research institute of Bioscience and Biotechnology) ;
  • Hur, Cheol-Goo (Plant Genome Research Center, Korea Research institute of Bioscience and Biotechnology)
  • 김정은 (한국생명공학연구원 식물유전체연구센터) ;
  • 백효정 (한국생명공학연구원 식물유전체연구센터) ;
  • 김영철 (한국생명공학연구원 식물유전체연구센터) ;
  • 허철구 (한국생명공학연구원 식물유전체연구센터)
  • Published : 2006.09.30

Abstract

The whole genome sequence was completed in arabidopsis and rice. Large amounts of EST data have been available from many other plants. Also, vast quantities of diverse biological data have been generated by various '-omics' technologies such as transcriptomics, proteomics, and metabolomics. Bioinformatics plays an essential role in extracting useful information from these tremendous amounts of biological data. In this review we introduced experimental methods to generate massive data, applications to plant science such as plant disease resistance and molecular breeding and bioinformatics tools and web sites available in plant biotechnology R&D. We concluded that new experimental methods and bioinfomation analysis techniques have made major contributions to the development of plant biotechnology and that bioinformatics has become a critical factor in plant biotechnology R&D.

애기 장대와 벼의 전체 게놈 염기서열 분석이 완료되었고, 다량의 EST 데이터가 많은 식물에서 이용 가능하게 되었다. 또한, 방대한 양의 다양한 생물학적 데이터들이 transcriptomics, proteomics, metabolomics와 같은 여러 '-omics' 기술에 의하여 만들어져 왔다. 생물정보학은 이런 방대한 양의 생물학적 데이터로부터 유용한 정보를 얻는데 필수적이고도 매우 중요한 역할을 수행한다. 이 총설에서, 우리는 대량의 데이터를 생성하는 실험적 방법들과, 식물 병 저항성과 분자 육종과 같은 식물 연구분야로의 응용, 그리고 식물 생명공학의 연구 개발에 유용한 생물정보학적 기술과. 인터넷 정보 사이트들을 소개하였다. 우리는 새로운 실험 방법들과 생물정보학적 분석 기술들이 식물 생명공학 발전에 중요하게 기여할 것으로 기대하고 있으며, 생물정보학은 식물 생명공학의 연구 개발에 있어서 결정적인 요소가 될 것이라 생각한다.

Keywords

References

  1. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde S, Moreno RF, Kerlavage AR, McCombie WR, Venter JC (1991) Complementary-DNA sequencing expressed sequence tags and human genome project. Science 252: 1651-1656 https://doi.org/10.1126/science.2047873
  2. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7: 986-995 https://doi.org/10.1101/gr.7.10.986
  3. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nature lmmunol 6: 973-979 https://doi.org/10.1038/ni1253
  4. Sae MS, Cho EJ, Choi E-Y, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J. 36: 652-663 https://doi.org/10.1046/j.1365-313X.2003.01907.x
  5. Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, Jones J, Flick E, Rholfing T, Fries J, Bradford K, McMenamy J, Smith M, Holeman H, Roe BA, Wiley G, Korf IF, Rabinowicz PD, Lakey N, McCombie WR, Jeddeloh JA,Martienssen RA. (2005) Sorghum genome sequencing by methylation filtration. PLoS Bioi 3: e13 https://doi.org/10.1371/journal.pbio.0030013
  6. Benton D (1996) Bioinformatics-principles and potential of a new multidisciplinary tool. Trends Biotechnol 14: 261-272 https://doi.org/10.1016/0167-7799(96)10037-8
  7. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33: W451-454 https://doi.org/10.1093/nar/gki186
  8. Breyne P, Dreesen R, Vandepoele K, De Veylder L, Van Breusegem F, Callewaert L, Rombauts S, Raes J, Cannoot B, Engler G, Inze D, labeau M (2002) Transcriptome analysis during cell division in plants. Proc Natl Acad Sci 99: 14825-14830
  9. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268: 78-94 https://doi.org/10.1006/jmbi.1997.0951
  10. Burke J, Davison D, Hide W (1999) d2_cluster: a validated method for clustering EST and full-length cDNA sequences. Genome Res 9: 1135-1142 https://doi.org/10.1101/gr.9.11.1135
  11. Cannon SB, Crow JA, Heuer ML, Wang X, Cannon EK, Dwan C, Lamblin AF, Vasdewani J, Mudge J, Cook A, Gish J, Cheung F, Kenton S, Kunau TM, Brown D, May GD, Kim D, Cook DR, Roe BA, Town CD, Young ND, Retzel EF (2005) Databases and information integration for the Medicago truncatula genome and transcriptome. Plant Physiol 138: 38-46 https://doi.org/10.1104/pp.104.059204
  12. Charless S Jr, Kang BC, Llu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jhan MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42: 675-688 https://doi.org/10.1111/j.1365-313X.2005.02410.x
  13. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, lou G, Whitham SA, Budworth PR, Tao Y, Xie z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, lhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559-574 https://doi.org/10.1105/tpc.010410
  14. Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57: 1045-1058 https://doi.org/10.1093/jxb/erj102
  15. Dangl JL, Dietrich RA, Richberg MH (1996) Death don't have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8: 1793-1807 https://doi.org/10.1105/tpc.8.10.1793
  16. Dong S, Earls DB (1994) Gene structure prediction by linguistic methods. Genomics 23: 540-551 https://doi.org/10.1006/geno.1994.1541
  17. Edwards D, Batley J (2004) Plant bioinformatics: from genome to phenome. Trends Biotech 22: 232-237 https://doi.org/10.1016/j.tibtech.2004.03.002
  18. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Nat Acad Sci 95: 14863-14868
  19. Ewing B, Reen P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8: 186-194 https://doi.org/10.1101/gr.8.3.186
  20. Fleming CM, Kowalski BR, Apffel A, Hancock WS (1999) Windowed mass selection method: a new data processing algorithm for liquid chromatography?mass spectrometry data. J Chromatogr A 849: 71-85 https://doi.org/10.1016/S0021-9673(99)00553-1
  21. Glinski M, Weckwerth W (2006) The role of mass spectrometry in plant systems biology. Mass Spectrom Rev 25: 173-214 https://doi.org/10.1002/mas.20063
  22. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296: 92-100 https://doi.org/10.1126/science.1068275
  23. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22: 245-252 https://doi.org/10.1016/j.tibtech.2004.03.007
  24. Guigo R, Knudsen S, Drake N, Smith T (1992) Prediction of gene structure. J Mol Biol 226: 141-157 https://doi.org/10.1016/0022-2836(92)90130-C
  25. Gupta S, Zink D, Korn B, Vingron M, Haas SA (2004) Genome wide identification and classification of alternative splicing based on EST data. Bioinformatics 20: 2579-2585 https://doi.org/10.1093/bioinformatics/bth288
  26. Haberer G, Mader MT, Kosarev P, Span nag I M, Yang L, Mayer KFX (2006). Large-scale cis-element Detection by Analysis of Correlated Expression and Sequence Conservation between Arabidopsis and Brassica oleracea (pp. pp.106.085639)
  27. Halket JM, Przyborowska A, Stein SE, Mallard WG, Down S, Chalmers RA (1999) Deconvolution gas chromatography/ mass spectrometry of urinary organic acids?potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun Mass Spectrorn 13: 279-84 https://doi.org/10.1002/(SICI)1097-0231(19990228)13:4<279::AID-RCM478>3.0.CO;2-I
  28. Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P,Brunak S (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 24: 3439-3452 https://doi.org/10.1093/nar/24.17.3439
  29. Henderson J, Sahasrabudhe S, Fasman KH (1997) Finding genes in human DNA with a hidden Markov model. J Comput Biol 4: 127-141 https://doi.org/10.1089/cmb.1997.4.127
  30. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9: 868-877 https://doi.org/10.1101/gr.9.9.868
  31. Jaffe DB, Butler J, Gnerre S, Mauceli E, Lindblad-Toh K, Mesirov JP, Zody Me,Lander ES (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 13: 91-96 https://doi.org/10.1101/gr.828403
  32. Jeong SC, Yang K, Park JY, Han KS, Yu S, Hwang TY, Hur CG, Kim SH, Park PB, Kim HM, Park YI, Liu JR (2006) Structure, expression, and mapping of two nodule-specific genes identified by mining public soybean EST databases. Gene (in press)
  33. Jeppe RA, Thomas L (2003) Functional markers in plants. Trends Plant Sci 8: 544-560
  34. Kang HY, Kim JF, Kim MH, Park SH, Oh TK, Hur CG (2006) MELDB: a database for microbial esterases and lipases. FEBS Lett 580: 2736-2740 https://doi.org/10.1016/j.febslet.2006.04.034
  35. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60: 2299-2301 https://doi.org/10.1021/ac00171a028
  36. Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBl-1). Proc Nat Acad Sci 98: 12295-12300
  37. Kruft V, Eubel H, Jansch L, Werhahn W, Braun HP (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127: 1694-1710 https://doi.org/10.1104/pp.010474
  38. Kulp D, Haussler D, Reese MG, Eeckman FH (1996) A generalized hidden Markov model for the recognition of human genes in DNA. Proc Int Conf Intell Syst Mol BioI 4: 134-142
  39. Lee S, Kim SY, Chung E, Joung YH, Pai HS, Hur CG, Choi D (2004) EST and microarray analyses of pathogenresponsive genes in hot pepper( Capsicum annuum L.) non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Funct Integr Genomics 4: 196-205
  40. Lisacek F, Cohen-Boulakia S, Appel RD (2006) Proteome informatics II: Bioinformatics for comparative proteomics. Proteomics 6: 5445-5466 https://doi.org/10.1002/pmic.200600275
  41. Liu J, Rost B (2003) Domains, motifs and clusters in the protein universe. Curr Opin Chem BioI 7: 5-11 https://doi.org/10.1016/S1367-5931(02)00003-0
  42. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rarl, EDSl, and NPRI/NIMI like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30: 415-429 https://doi.org/10.1046/j.1365-313X.2002.01297.x
  43. Marathe R, Guan Z, Anandalakshmi R, Zhao H, DineshKumar SP (2004) Study of Arabidopsis thaliana resistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol 55: 501-520 https://doi.org/10.1007/s11103-004-0439-0
  44. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangle JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics 26: 403-410 https://doi.org/10.1038/82521
  45. Mathe C, Sagot MF, Schiex T, Rouze P (2002) Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res 30: 4103-4117 https://doi.org/10.1093/nar/gkf543
  46. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, MunchR, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31: 374-378 https://doi.org/10.1093/nar/gkg108
  47. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-Wide Analysis of NBS-LRR Encoding Genes in Arabidopsis. Plant Cell 15: 809-834 https://doi.org/10.1105/tpc.009308
  48. Nagayama K (1997) Protein arrays: concepts and subjects. Adv Biophys 34: 3-23 https://doi.org/10.1016/S0065-227X(97)89628-1
  49. Newton RP, Brenton AG, Smith CJ, Dudley E (2004) Plant proteome analysis by mass spectrometry: principles, problems, pitfalls and recent developments. Phytochemistry 65: 1449-1485 https://doi.org/10.1016/j.phytochem.2004.04.015
  50. Nielsen KL, Hogh AL, Emmersen J (2006). DeepSAGE-digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples (pp. gk1714)
  51. Norbeli I, Thornton JM (2006) A bioinformatician's view of the metabolome. BioEssays 28: 534-545 https://doi.org/10.1002/bies.20414
  52. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27: 29-34 https://doi.org/10.1093/nar/27.1.29
  53. Palagi PM, Hernandez P, Walther D, Appel RD. (2006) Proteome informatics I: Bioinformatics tools for processing experimental data. Proteomics 6: 5435-5444 https://doi.org/10.1002/pmic.200600273
  54. Park OK (2004) Proteomic studies in plants. J Biochem Mol BioI. 37: 133-138 https://doi.org/10.5483/BMBRep.2004.37.1.133
  55. Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat. Genet. Suppl. 33: 311-323 https://doi.org/10.1038/ng1106
  56. Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ (2000) Protomics of the chlotoplast: systematic identification and targeting analysis of luminal and peripheral thylakoid proteins. Plant Cell 12: 319-342 https://doi.org/10.1105/tpc.12.3.319
  57. Peltier JB, Ytterberg J, Liberles DA, Roepstorff P, van Wijk KJ (2001) Identification of a 350 kDa ClpP protease complex with 10 different Clp isoforms in chloroplasts of Arebidopsis tha/iana. J Bioi Chem 276: 16318-16327 https://doi.org/10.1074/jbc.M010503200
  58. Rajee KV, Andrease G, Mark ES (2005) Genomics-assisted breeding for crop improvements. Tends Plant Sci 10: 621-630 https://doi.org/10.1016/j.tplants.2005.10.004
  59. Rhee SY, Dickerson J, Xu D. (2006) Bioinformatics and Its Applications in Plant Biology. Annu Rev Plant Bioi 57: 335-360 https://doi.org/10.1146/annurev.arplant.56.032604.144103
  60. Richmond T, Somerville S (2000) Chasing the dream: plant EST microarrays. Curr Opin Plant Bioi 3: 108-116 https://doi.org/10.1016/S1369-5266(99)00049-7
  61. Rogic S, Mackworth AK, Ouellette FB. (2001) Evaluation of gene-finding programs on mammalian sequences. Genome Res 11: 817-832 https://doi.org/10.1101/gr.147901
  62. Ronneberg TA, Freeland SJ, Landweber LF. (2001) Genview and Gencode : a pair of programs to test theories of genetic code evolution. Bioinformatics 17: 280-281 https://doi.org/10.1093/bioinformatics/17.3.280
  63. Salzberg S, Deicher AL, Fasman KH, Henderson J. (1998) A decision tree system for finding genes in DNA. J Com put Bioi 5: 667-680 https://doi.org/10.1089/cmb.1998.5.667
  64. Seki M, Satou M, Sakurai T, Akiyama K, !ida K, Ishida J, Nakajima M, Enju A, Narusaka M, Fujita M, Oono Y, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2004) RIKEN Arabidopsis full-length (RAFL) eDNA and its applications for expression profiling under abiotic stress conditions. J Exp Bot 55: 213-223 https://doi.org/10.1093/jxb/erh007
  65. Shulaev V (2006) Metaboloics technology and bioinformatics. Brief Bioinform 7: 128-139 https://doi.org/10.1093/bib/bbl012
  66. Silivo S, Roberto T (2005) To clone or not to clone plant QTLs: present and future challenges. Trends plant science 10: 297-304 https://doi.org/10.1016/j.tplants.2005.04.008
  67. Silivo S, Roverto T, Elena C, Marco M, Stanislas V, Leon B, Peter I, Keith E, Ronald LP (2002) Toward positional cloning of Vgtl, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol BioI 48: 601-603 https://doi.org/10.1023/A:1014838024509
  68. Smith CM, Shindyalov IN, Veretnik S, Gribskov M, Taylor SS, Ten Eyck LF, Bourne PE (1997) The protein kinase resource. Trends Biochem Sci 22: 444-446 https://doi.org/10.1016/S0968-0004(97)01131-6
  69. Snyder EE, Stormo GD (1995) Identification of protein coding regions in genomic DNA. J Mol Bioi 248: 1-18 https://doi.org/10.1006/jmbi.1995.0198
  70. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts (Vol. 34, pp. W435-439)
  71. Stephen R, Heiko S, Klaus M (2005) PlantMarkers-a database of predicted molecular markers from plants. Nucleic Acids Research 33: 628-632 https://doi.org/10.1093/nar/gki074
  72. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41 https://doi.org/10.1186/1471-2105-4-41
  73. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28: 33-36 https://doi.org/10.1093/nar/28.1.33
  74. Terabe S, Markuszewski MJ, Inoue N, et al. (2001) Capillary electrophoretic techniques toward the metabolome analysis. Pure Appl Chem 73: 1563-1572 https://doi.org/10.1351/pac200173101563
  75. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815 https://doi.org/10.1038/35048692
  76. Viant MR, Rosenblum ES, and Tieerdema RS (2003) NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol 37: 4982-4989 https://doi.org/10.1021/es034281x
  77. Walter G, Bussow K, Cahill D, Lueking A,Lehrach H (2000) Protein arrays for gene expression and molecular interaction screening. Curr Opin Microbiol 3: 298-302 https://doi.org/10.1016/S1369-5274(00)00093-X
  78. Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Wang JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112: 1258-1270 https://doi.org/10.1007/s00122-006-0227-0
  79. Wang J, Delabie J, Aasheim H, Smeland E,Myklebost O (2002) Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinformatics 3: 36 https://doi.org/10.1186/1471-2105-3-36
  80. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids-A structure for deoxyribose nucleic acid. Nature 171: 737-738 https://doi.org/10.1038/171737a0
  81. Wayne ML, Mclntyre LM (2002) Combining mapping and arraying: An approach to candidate gene identification. PNAS 99: 14903-14906 https://doi.org/10.1073/pnas.222549199
  82. Windig W, Phalp JM, Payne AW (1996) A noise and background reduction methods for component detection in liquid chromatography/mass spectrometry. Anal Chem 68: 3602-3606 https://doi.org/10.1021/ac960435y
  83. Wolter DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683-5690 https://doi.org/10.1021/ac010617e
  84. Xu Y, Mural R, Shah M, Uberbacher E. (1994) Recognizing exons in genomic sequence using GRAIL II. Genet Eng (N Y) 16: 241-253
  85. Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11: 1621-1639 https://doi.org/10.1101/gad.11.13.1621
  86. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J,Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L,Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, u L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X,Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, u P, Chen W,wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J;Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z,Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79-92 https://doi.org/10.1126/science.1068037
  87. Zhang MQ. (1997) Identification of protein coding regions in the human genome by quadratic discriminant analysis. Proc Natl Acad Sci 94: 565-568
  88. Zhang W, Ruan J, Ho T-hD, You Y, Yu T, Quatrano RS. (2005) cis-Regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21: 3074-3081 https://doi.org/10.1093/bioinformatics/bti490
  89. Zhou T, Wang Y, Chen J-Q, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics 271: 402-415 https://doi.org/10.1007/s00438-004-0990-z