Plant Growth Substances Produced by Methylobacterium spp. and Their Effect on Tomato (Lycopersicon esculentum L.) and Red Pepper (Capsicum annuum L.) Growth

  • Ryu, Jeong-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Poonguzhali, Selvaraj (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Yim, Woo-Jong (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Indiragandhi, Pandiyan (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Kyoung-A (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Anandham, Rangasamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Yun, Jong-Chul (Department of Organic Farming Technology, National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Kye-Hoon (Department of Environmental Horticulture, The University of Seoul) ;
  • Sa, Tongmin (Department of Agricultural Chemistry, Chungbuk National University)
  • 발행 : 2006.10.31

초록

Bacteria from the Methylobacterium genus, called pink-pigmented facultative methylotrophic bacteria (PPFMs), are common inhabitants of plants, potentially dominating the phyllosphere population, and are also encountered in the rhizosphere, seeds, and other parts of plants, being versatile in nature. The consistent success of the Methylobacterium plant association relies on methylotrophy, the ability to utilize the one-carbon compound methanol emitted by plants. However, the efficiency of Methylobacterium in plant growth promotion could be better exploited and thus has attracted increasing interest in recent years. Accordingly, the present study investigated the inoculation effects of Methylobacterium sp. strains CBMB20 and CBMB 110 on seed imbibition to tomato and red pepper on the growth and accumulation of phytohormone levels under gnotobiotic conditions. Seeds treated with the Methylobacterium strains showed a significant increase in root length when compared with either the uninoculated control or Methylobacterium extorquens $miaA^-$ knockout mutanttreated seeds. Extracts of the plant samples were used for indole-3-acetic acid (IAA), trans-zeatin riboside (t-ZR), and dihydrozeatin riboside (DHZR) assays by immunoanalysis. The treatment with Methylobacterium sp. CBMB20 or CBMB 110 produced significant increases in the accumulation of IAA and the cytokinins t-ZR and DHZR in the red pepper extracts, whereas no IAA was detected in the tomato extracts, although the cytokinin concentrations were significantly increased. Therefore, this study proved that the versatility of Methylobacterium as a plant-growth promoting bacteria could be better exploited.

키워드

참고문헌

  1. Arshad, M. and W. T. Frankenberger. 1993. Microbial production of plant growth regulators, pp. 307-343. In F. B. Metting, Jr. (ed.). Soil Microbial Ecology. Applications in Agricultural and Environmental Management. Marcel Dekker, Inc., New York
  2. Barea, J. M. and M. E. Brown. 1974. Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J. Appl. Bacteriol. 40: 583-593
  3. Basile, D. V., L. L. Slade, and W. A. Corpe. 1969. An association between a bacterium and a liverwort, Scapania nemorosa. Bull. Torrey Bot. Club 96: 6711-6714 https://doi.org/10.2307/2484012
  4. Brown, M. E. 1976. Role of Azotobacter paspali in association with Paspalum notatum. J. Appl. Bacteriol. 40: 341-348 https://doi.org/10.1111/j.1365-2672.1976.tb04182.x
  5. Butler, H. K., R. Dadson, and M. A. Holland. 2000. Evidence that trans-zeatin riboside produced by a microbial symbiont is physiologically meaningful to its host plant. (abstract available at http://abstracts.aspb.org/aspp2000/public /P43/0604.html)
  6. Callis, J. 2005. Auxin action. Nature 435: 436-437
  7. Corpe, W. A. and D. V. Basile. 1982. Methanol-utilizing bacteria associated with green plants. Dev. Indust. Microbiol. 23: 483-493
  8. Corpe, W. A. and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. Microbiol. Ecol. 62: 243-248 https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
  9. Davies, P. J. 1995. The plant hormone concept: Concentration, sensitivity, and transport, pp. 13-18. In P. J. Davies (ed.), Plant Hormones: Physiology, Biochemistry, and Molecular Biology. Kluwer Academic Publishers, Dordrecht, The Netherlands
  10. Dunleavy, J. M. 1988. Curtobacterium plantarum sp. nov. is ubiquitous in plant leaves and is seed transmitted in soybean and corn. Int. J. Syst. Bacteriol. 39: 240-249
  11. Dunleavy, J. M. 1990. Urease production by Methylobacterium mesophilicum, a seed transmitted bacterium ubiquitous in soybean. Presented at 3rd Biennial Conf. Mol. Cell. Biol. Soybean, Ames. Iowa, July 23-25
  12. Fall, R. and A. A. Benson. 1996. Leaf methanol - the simplest natural product from plants. Trends Plant Sci. 1: 296-301 https://doi.org/10.1016/S1360-1385(96)88175-0
  13. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117 https://doi.org/10.1139/m95-015
  14. Holland, M. A. 1997. Occam's razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol. 115: 865-868 https://doi.org/10.1104/pp.115.3.865
  15. Holland, M. A. 1997. Methylobacterium and plants. Rec. Res. Dev. Plant Physiol. 1: 207-213
  16. Holland, M. A. and J. C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98: 942-948 https://doi.org/10.1104/pp.98.3.942
  17. Holland, M. A. and J. C. Polacco. 1994. PPFMs and other contaminants: Is there more to plant physiology than just plant? Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 197-209 https://doi.org/10.1146/annurev.pp.45.060194.001213
  18. Ivanova, E. G., N. V. Doronina, and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70: 392-397 https://doi.org/10.1023/A:1010469708107
  19. Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
  20. Koenig, R. L., R. O. Morris, and J. C. Polacco. 2002. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. Bacteriol. 184: 1832-1842 https://doi.org/10.1128/JB.184.7.1832-1842.2002
  21. Lee, H. Y., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. B. Hoon, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079
  22. Long, R., R. Morris, and J. Polacco. 1997. Cytokinin production by plant-associated methylotrophic bacteria. Plant Physiol. Abstract No. 1168
  23. Madhaiyan, M., S. Poonguzhali, H. S. Lee, K. Hari, S. P. Sundaram, and T. M. Sa. 2005. Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol. Fertil. Soils 41: 350-358 https://doi.org/10.1007/s00374-005-0838-7
  24. Madhaiyan, M., S. Poonguzhali, J. H. Ryu, and T. M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224: 268-278 https://doi.org/10.1007/s00425-005-0211-y
  25. Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y. Chung, J. C. Yang, S. Sundaram, and T. M. Sa. 2004. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot. Bull. Acad. Sin. 45: 315-324
  26. Mok, M. C. 1994. Cytokinins and plant development - an overview, pp. 155-166. In M. C. Mok (ed.). Cytokinins - Chemistry, Activity, and Function. CRC Press, Boca Raton
  27. Nautiyal, C. S., S. Mehta, and H. B. Singh. 2006. Biological control and plant-growth promotion by Bacillus strains from milk. J. Microbiol. Biotechnol. 16: 184-192 https://doi.org/10.1159/000094830
  28. Napoli, C. A., C. A. Beveridge, and K. C. Snowden. 1999. Reevaluating concepts of apical dominance and the control of auxiliary bud outgrowth. Curr. Top. Dev. Biol. 44: 127-169 https://doi.org/10.1016/S0070-2153(08)60469-X
  29. Nemecek-Marshall, M., R. C. MacDonald, J. J. Franzen, C. L. Wojciechowski, and R. Fall. 1995. Methanol emission from leaves: Enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108: 1359-1368 https://doi.org/10.1104/pp.108.4.1359
  30. Nieto, K. F. and W. T. Frankenberger. 1989. Biosynthesis of cytokinins by Azotobacter chroococcum. Soil Biol. Biochem. 21: 967-972 https://doi.org/10.1016/0038-0717(89)90089-8
  31. Omer, Z. S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43: 93-96 https://doi.org/10.1023/B:GROW.0000038360.09079.ad
  32. Omer, Z. S., R. Tombolini, and B. Gerhardson. 2004. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol. Ecol. 47: 319-326 https://doi.org/10.1016/S0168-6496(04)00003-0
  33. Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801 https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  34. Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118: 10-15 https://doi.org/10.1034/j.1399-3054.2003.00086.x
  35. Poonguzhali, S., M. Madhaiyan, M. Thangaraju, J. H. Ryu, K. Y. Chung, and T. M. Sa. 2005. Rhizobacteria-based bio-formulations to enhanced growth and yield of pearl millet (Pennisetum glaucum (L.) R.Br.) and blackgram (Vigna mungo L.). J. Microbiol. Biotechnol. 15: 903-908
  36. Rubery, P. H. 1987. Manipulation of hormone transport in physiological and development studies, pp. 161-174. In G. V. Hoad, J. R. Lenton, M. B. Jackson, and R. K. Atkin (eds.). Hormone Action in Plant Development: A Critical Appraisal. Butterworths Co. Ltd., Long Ashton, U.K
  37. Ryu, C. M., J. W. Kim, O. K. Choi, S. Y. Park, and S. H. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991
  38. SAS Institute Inc. 2004. SAS user's guide, Version 9.1. SAS Institute Inc., Cary, North Carolina, USA
  39. Taiz, L. and E. Zeiger. 1998. Plant Physiology, 2nd Ed. Sinauer Associates, Inc., Sunderland, MA
  40. Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenobacillus polymyxa. Soil Biol. Biochem. 31: 1847-1852 https://doi.org/10.1016/S0038-0717(99)00113-3
  41. Woodward, A. W. and B. Bartel. 2005. Auxin: Regulation, action and interaction. Ann. Bot. 95: 707-735 https://doi.org/10.1093/aob/mci083