참고문헌
- Arshad, M. and W. T. Frankenberger. 1993. Microbial production of plant growth regulators, pp. 307-343. In F. B. Metting, Jr. (ed.). Soil Microbial Ecology. Applications in Agricultural and Environmental Management. Marcel Dekker, Inc., New York
- Barea, J. M. and M. E. Brown. 1974. Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J. Appl. Bacteriol. 40: 583-593
- Basile, D. V., L. L. Slade, and W. A. Corpe. 1969. An association between a bacterium and a liverwort, Scapania nemorosa. Bull. Torrey Bot. Club 96: 6711-6714 https://doi.org/10.2307/2484012
- Brown, M. E. 1976. Role of Azotobacter paspali in association with Paspalum notatum. J. Appl. Bacteriol. 40: 341-348 https://doi.org/10.1111/j.1365-2672.1976.tb04182.x
- Butler, H. K., R. Dadson, and M. A. Holland. 2000. Evidence that trans-zeatin riboside produced by a microbial symbiont is physiologically meaningful to its host plant. (abstract available at http://abstracts.aspb.org/aspp2000/public /P43/0604.html)
- Callis, J. 2005. Auxin action. Nature 435: 436-437
- Corpe, W. A. and D. V. Basile. 1982. Methanol-utilizing bacteria associated with green plants. Dev. Indust. Microbiol. 23: 483-493
- Corpe, W. A. and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. Microbiol. Ecol. 62: 243-248 https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
- Davies, P. J. 1995. The plant hormone concept: Concentration, sensitivity, and transport, pp. 13-18. In P. J. Davies (ed.), Plant Hormones: Physiology, Biochemistry, and Molecular Biology. Kluwer Academic Publishers, Dordrecht, The Netherlands
- Dunleavy, J. M. 1988. Curtobacterium plantarum sp. nov. is ubiquitous in plant leaves and is seed transmitted in soybean and corn. Int. J. Syst. Bacteriol. 39: 240-249
- Dunleavy, J. M. 1990. Urease production by Methylobacterium mesophilicum, a seed transmitted bacterium ubiquitous in soybean. Presented at 3rd Biennial Conf. Mol. Cell. Biol. Soybean, Ames. Iowa, July 23-25
- Fall, R. and A. A. Benson. 1996. Leaf methanol - the simplest natural product from plants. Trends Plant Sci. 1: 296-301 https://doi.org/10.1016/S1360-1385(96)88175-0
- Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117 https://doi.org/10.1139/m95-015
- Holland, M. A. 1997. Occam's razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol. 115: 865-868 https://doi.org/10.1104/pp.115.3.865
- Holland, M. A. 1997. Methylobacterium and plants. Rec. Res. Dev. Plant Physiol. 1: 207-213
- Holland, M. A. and J. C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98: 942-948 https://doi.org/10.1104/pp.98.3.942
- Holland, M. A. and J. C. Polacco. 1994. PPFMs and other contaminants: Is there more to plant physiology than just plant? Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 197-209 https://doi.org/10.1146/annurev.pp.45.060194.001213
- Ivanova, E. G., N. V. Doronina, and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70: 392-397 https://doi.org/10.1023/A:1010469708107
- Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
- Koenig, R. L., R. O. Morris, and J. C. Polacco. 2002. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. Bacteriol. 184: 1832-1842 https://doi.org/10.1128/JB.184.7.1832-1842.2002
- Lee, H. Y., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. B. Hoon, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079
- Long, R., R. Morris, and J. Polacco. 1997. Cytokinin production by plant-associated methylotrophic bacteria. Plant Physiol. Abstract No. 1168
- Madhaiyan, M., S. Poonguzhali, H. S. Lee, K. Hari, S. P. Sundaram, and T. M. Sa. 2005. Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol. Fertil. Soils 41: 350-358 https://doi.org/10.1007/s00374-005-0838-7
- Madhaiyan, M., S. Poonguzhali, J. H. Ryu, and T. M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224: 268-278 https://doi.org/10.1007/s00425-005-0211-y
- Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y. Chung, J. C. Yang, S. Sundaram, and T. M. Sa. 2004. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot. Bull. Acad. Sin. 45: 315-324
- Mok, M. C. 1994. Cytokinins and plant development - an overview, pp. 155-166. In M. C. Mok (ed.). Cytokinins - Chemistry, Activity, and Function. CRC Press, Boca Raton
- Nautiyal, C. S., S. Mehta, and H. B. Singh. 2006. Biological control and plant-growth promotion by Bacillus strains from milk. J. Microbiol. Biotechnol. 16: 184-192 https://doi.org/10.1159/000094830
- Napoli, C. A., C. A. Beveridge, and K. C. Snowden. 1999. Reevaluating concepts of apical dominance and the control of auxiliary bud outgrowth. Curr. Top. Dev. Biol. 44: 127-169 https://doi.org/10.1016/S0070-2153(08)60469-X
- Nemecek-Marshall, M., R. C. MacDonald, J. J. Franzen, C. L. Wojciechowski, and R. Fall. 1995. Methanol emission from leaves: Enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108: 1359-1368 https://doi.org/10.1104/pp.108.4.1359
- Nieto, K. F. and W. T. Frankenberger. 1989. Biosynthesis of cytokinins by Azotobacter chroococcum. Soil Biol. Biochem. 21: 967-972 https://doi.org/10.1016/0038-0717(89)90089-8
- Omer, Z. S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43: 93-96 https://doi.org/10.1023/B:GROW.0000038360.09079.ad
- Omer, Z. S., R. Tombolini, and B. Gerhardson. 2004. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol. Ecol. 47: 319-326 https://doi.org/10.1016/S0168-6496(04)00003-0
- Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801 https://doi.org/10.1128/AEM.68.8.3795-3801.2002
- Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118: 10-15 https://doi.org/10.1034/j.1399-3054.2003.00086.x
- Poonguzhali, S., M. Madhaiyan, M. Thangaraju, J. H. Ryu, K. Y. Chung, and T. M. Sa. 2005. Rhizobacteria-based bio-formulations to enhanced growth and yield of pearl millet (Pennisetum glaucum (L.) R.Br.) and blackgram (Vigna mungo L.). J. Microbiol. Biotechnol. 15: 903-908
- Rubery, P. H. 1987. Manipulation of hormone transport in physiological and development studies, pp. 161-174. In G. V. Hoad, J. R. Lenton, M. B. Jackson, and R. K. Atkin (eds.). Hormone Action in Plant Development: A Critical Appraisal. Butterworths Co. Ltd., Long Ashton, U.K
- Ryu, C. M., J. W. Kim, O. K. Choi, S. Y. Park, and S. H. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991
- SAS Institute Inc. 2004. SAS user's guide, Version 9.1. SAS Institute Inc., Cary, North Carolina, USA
- Taiz, L. and E. Zeiger. 1998. Plant Physiology, 2nd Ed. Sinauer Associates, Inc., Sunderland, MA
- Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenobacillus polymyxa. Soil Biol. Biochem. 31: 1847-1852 https://doi.org/10.1016/S0038-0717(99)00113-3
- Woodward, A. W. and B. Bartel. 2005. Auxin: Regulation, action and interaction. Ann. Bot. 95: 707-735 https://doi.org/10.1093/aob/mci083