Heat Shock Causes Oxidative Stress and Induces a Variety of Cell Rescue Proteins in Saccharomyces cerevisiae KNU5377

  • Kim, Il-Sup (Department of Microbiology, Kyungpook National University) ;
  • Moon, Hye-Youn (Metabolic Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yun, Hae-Sun (Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institute of Health) ;
  • Jin, Ing-Nyol (Department of Microbiology, Kyungpook National University)
  • Published : 2006.10.31

Abstract

In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of $40^{\circ}C$. The KNU5377 strain evidenced a very similar growth rate at $40^{\circ}C$ as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at $43^{\circ}C$. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and $H^+$-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures ($43^{\circ}C$), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.

Keywords

References

  1. Aguilera, A, R.A. Peinado, C. Millan, J.M. Ortega, and J.C. Mauicio. 2006. Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int. J. Food Microbiol. 110, 34-42 https://doi.org/10.1016/j.ijfoodmicro.2006.02.002
  2. Ambesi, A., M. Miranda, V.V. Petrov, and C.W. Slayman. 2000. Biogenesis and function of the yeast plasma membrane H(+)-ATPase. J. Exp. Biol. 203, 155-160
  3. Arrigo, A.P., C. Paul, C. Ducasse, O. Sauvageot, and C. Kretz-Remy. 2002. Small stress proteins: modulation of intracellular redox state and protection against oxidative stress. p. 171-184. In A.-P. Arrigo and W.E.G. Muller (eds.), Small stress proteins. Springer-Verlag Berlin, Germany
  4. Beaven, M.J., C. Charpentier, and A.H. Rose. 1982. Production and tolerance of ethanol in relation to phospholipid fatty acyl composition of Saccharomyces cerevisiae. J. Gen. Microbiol. 128, 1447-1455
  5. Benaroudj, N., D.H. Lee, and A.L. Goldberg. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 276, 24261-24267 https://doi.org/10.1074/jbc.M101487200
  6. Beuge, J.A. and S.D. Aust. 1978. Microsomal lipid peroxidation. Methods Enzymol. 52, 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  7. Brokovich, K.A., F.W. Farrelly, D.B. Finkelstein, J. Taulien, and S. Lindquist. 1989. Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 9, 3919-3930 https://doi.org/10.1128/MCB.9.9.3919
  8. Brosnan, M.P., D. Donnelly, T.C. James, and U. Bond. 2000. The stress response is repressed during fermentation in brewery strains of yeast. Appl. Microbiol. 88, 746-755 https://doi.org/10.1046/j.1365-2672.2000.01006.x
  9. Carmelo, V., P. Bogaerts, and I. Sa-Correia. 1996. Activity of plasma membrane $H^{+}$-ATPase and expression of PMAI and PMA2 genes in Saccharomyces cerevisiae cells grown at optimal and low pH. Arch. Microbiol. 166, 315-320 https://doi.org/10.1007/s002030050389
  10. Cashikar, A.G., M.L. Duennwald, and S.L. Lindquist. 2005. A chaperone pathway in protein disaggregation: Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp 104. J. Biol. Chem. in Press
  11. Chatterjee, M.T., S.A. Khalawan, and B.P. Curran. 2000. Cellular lipid composition influences stress activation of the yeast general stress response element (STRE). Microbiology 146, 877-884 https://doi.org/10.1099/00221287-146-4-877
  12. Chen, E.C. 1981. Relaease of fatty acids as a consequence of yeast autolysis. J. Am. Soc. Brew. Chem. 39, 117-124
  13. Christian, G., L. Gilles, L. Jaekwon, J.M. Buhler, K. Sylvie, P. Michel, B. Helian, B.T. Michael, and L. Jean. 1998. The $H_{2}O_{2}$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 22480-22489 https://doi.org/10.1074/jbc.273.35.22480
  14. Coote, PJ., M.V. Jones, U. Seymour, D.L. Rowe, D.P. Ferdinando, A.J. McArthur, and M.B. Cole. 1994. Activity of the membrane H(+)-ATPase is a key physiological. determinant of thermotolerance in Saccharromyces cerevisiae. Microbiology 140, 1881-1890 https://doi.org/10.1099/13500872-140-8-1881
  15. Davidson, J.F. and R.H. Schiestl. 2001a. Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. J. Bacteriol. 183, 4580-4587 https://doi.org/10.1128/JB.183.15.4580-4587.2001
  16. Davidson, J.F. and R.H. Schiestl. 2001b. Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol. Cell. BioI. 21, 8483-8489 https://doi.org/10.1128/MCB.21.24.8483-8489.2001
  17. Davidson, J.F., B. Whyte, P.H. Bissinger, and R.H. Schiestl. 1996. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 5116-5121
  18. Echave, P., J. Tamarit, E. Cabiscol, and J. Ros. 2003. Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli. J. BioI. Chem. 278, 30193-30198 https://doi.org/10.1074/jbc.M304351200
  19. Elisa, C., P. Eva, E. Pedro, H. Enrique, and R. Joaquim. 2000. Oxidative damage stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275, 27393-27398
  20. Elutherio, E., M. Ribeiro, M. Pereira, F.M. Maia, and A.D. Panek. 1995. Effect of trehalose during stress in a heat-shock resistant mutant of Saccharomyces cerevisiae. Biochem. Mol. Biol. Int. 36, 1217-1223
  21. Estruch, F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24, 469-486 https://doi.org/10.1111/j.1574-6976.2000.tb00551.x
  22. Fernanda rosa, M. and I. Sa-correia, 1991. In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Am. Soc. Microbiol. 57, 830-835
  23. Fernandes, A.R., F.P. Peixoto, and I. Sa-Correia. 1998. Activation of the $H^{+}$-ATPase in the plasma membrane of cells of Saccharomyces cerevisiae grown under mild copper stress. Arch. Microbiol. 171, 6-12 https://doi.org/10.1007/s002030050671
  24. Fillinger, S., M.K. Chaveroche, P. van Dijck, R. de Vries, G. Ruijter, J. Thevelein, and C. d'Enfert. 2001. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147, 1851-1862 https://doi.org/10.1099/00221287-147-7-1851
  25. Herdeiro, R.S., M.D. Pereira, A.D. Panek, and E.C. Eleutherio. 2006. Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochem. Biophys. Acta 1760, 340-346 https://doi.org/10.1016/j.bbagen.2006.01.010
  26. Hohnman, S. and E.H. Mager. 2003. Yeast stress responses. Springer-Verlag Berlin, German
  27. Kim, I.S., H.S. Yun, H. Shimisu, E. Kitakawa, H. Iwahashi, and I.N. Jin. 2005. Elucidation of copper and asparagine transport systems in Saccharomyces cerevisiae KNU5377 through genome-wide transcriptional analysis. J. Microbiol. Biotechnol. 15, 1240-1249
  28. Kim, J.W., I.N. Jin, and J.H. Seu. 1995a. Isolation of Saccharomyces cerevisiae F38-1, a thermotolerant for fuel alcohol production at higher temperature. Kor. J. Appl. Microbiol. Biotechnol. 23, 617-623
  29. Kim, J.W., S.H. Kim, and I.N. Jin. 1995b. The fermentation characteristics of Saccharomyces cerevisiae F38-1, a thermotolerant yeast isolated for fuel alcohol production at elevated temperature. Kor. J. Appl. Microbiol. Biotechn. 23, 624-631
  30. Laemmli, U.K. 1979. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  31. Lee, S.M. and J.W. Park. 1998. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase. Arch. Biochem. Biophys. 359, 99-106 https://doi.org/10.1006/abbi.1998.0896
  32. Lentini, A., M. Mariani, and S. Takis. 1998. An overview of the physiological changes to the structure and activity of the yeast cell during fermentation, storage and when subjected to successive repitchings. Proc. 25th Conv. Inst. Brew. Asia Pacific Sect., Perth
  33. Lushchak, V.I. and T.V. Bagnyukova. 2006a. Temperature increase results in oxidative stress in goldfish tissues. 1. Indices of oxidative stress. Comp. Biochem. Physiol. C Toxiol. Pharmacol. 143, 30-35 https://doi.org/10.1016/j.cbpc.2005.11.017
  34. Lushchak, V.I. and T.V. Bagnyukova. 2006b. Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp. Biochem. Physiol. C Toxiol. Pharmacol. 143, 36-41 https://doi.org/10.1016/j.cbpc.2005.11.018
  35. Majara, M., E.S.C. O'Conner-Cox, and B.C. Axcell. 1996. Trehalose-an osmoprotectant and stress indicator compound in high and very high gravity brewing. J. Am. Soc. Brew. Chem. 54, 149-154 https://doi.org/10.1094/ASBCJ-54-0149
  36. Mehlen, P., X. Preville, P. Chareyron, J. Briolay, R. Klemenz, and A.P. Arrigo. 1995. Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystalline confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J. Immunol. 154, 363-374
  37. Miller, L.T. 1982. Single deriviation method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acid. J. Clin. Microbiol. 18, 861-867
  38. Navarro-Avino, J.P., R. Prasad, V.J. Miralles, R.M. Bentino, and R. Serrano. 1999. A proposal of nomenclature of aldehyde dehydrogenase in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15, 829-842 https://doi.org/10.1002/(SICI)1097-0061(199907)15:10A<829::AID-YEA423>3.0.CO;2-9
  39. Ogawa, Y., A. Nitta, H. Uchitama, T. Imamura, H. Shimoi, and K. Ito. 2000. Tolerance mechanism of the tolerant the ethanol-tolerant mutant of sake yeast. J. Biosci. Bioeng. 90, 313-320 https://doi.org/10.1016/S1389-1723(00)80087-0
  40. Panaretou, B. and P.W. Piper. 1992. The plasma membrane of yeast acquires a novel heat shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur. J. Biochem. 206, 635-640 https://doi.org/10.1111/j.1432-1033.1992.tb16968.x
  41. Patrica, M., B. Fernandes, T. Domitrovic, C.M. Kao, and E. Kurtenach. 2004. Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEMS Lett. 556, 153-160
  42. Pereira Ede, J., A.D. Panek, and E.C. Eleutherio. 2003. Protection against oxidation during dehydration of yeast. Cell Stress Chaperones 8, 120-124 https://doi.org/10.1379/1466-1268(2003)008<0120:PAODDO>2.0.CO;2
  43. Piper, P.W., C. Ortiz-Calderon, C. Holyoak, P. Coote, and M. Cole. 1997. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevtstae, is a stress-inducible regulator of plasma membrane H(+)-ATP ase. Cell Stress Chaperones 2, 12-24 https://doi.org/10.1379/1466-1268(1997)002<0012:HTIPMH>2.3.CO;2
  44. Piper, P.W., K. Talreja, B. Panaretou, P. Moradas-Ferreira, K. Byrne, U.M. Praekelt, P. Meacock, M. Recnacq, and H. Boucherie. 1994. Induction of major heat shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140, 3031-3038 https://doi.org/10.1099/13500872-140-11-3031
  45. Preville, X., F. Salvemini, S. Giraud, S. Chaufour, C. Paul, G. Stepien, M.Y. Ursini, and AP. Arrigo. 1999. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp. Cell Res. 247, 61-78 https://doi.org/10.1006/excr.1998.4347
  46. Reznick, A.Z. and L. Packer. 1994. Oxidative damage to proteins: spectrometric method for carbonyl assay. Methods Enzymol. 233, 357-363 https://doi.org/10.1016/S0076-6879(94)33041-7
  47. Rogalla, T., M. Ehrnsperger, X. Preville, A Kotlyarov, G. Lustsch, C. Ducasse, C. Paul, M. Wieske, A.P. Arrigo, J. Buchner, and M. Gaestel. 1999. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J. Biol. Chem. 274, 18947-18956 https://doi.org/10.1074/jbc.274.27.18947
  48. Serrano, R. 1978. Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae. Mol. Cell Biochem. 22, 51-63
  49. Seymour, I.J. and P.W. Piper. 1999. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145, 231-239 https://doi.org/10.1099/13500872-145-1-231
  50. Steels, E.L., R.P. Learmonth, and K. Waston. 1994. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140, 569-576 https://doi.org/10.1099/00221287-140-3-569
  51. Swan, T.M. and K. Watson. 1997. Membrane fatty acid composition and membrane fluidity as parameters of stress tolerance in yeast. Can. J. Microbiol. 43, 70-77 https://doi.org/10.1139/m97-010
  52. Teparic, R., I., Stuparevic, and V. Mrsa. 2004. Increased mortality of Saccharomyces cerevisiae cell wall protein mutants. Microbiology 150, 3145-3150 https://doi.org/10.1099/mic.0.27296-0
  53. Voit, E.O. 2003. Biochemical and genomic regulation of the trehalose cycle in yeast: review of observation and canonical model analysis. J. Theor. Biol. 223, 55-78 https://doi.org/10.1016/S0022-5193(03)00072-9
  54. Walker, G.M. 1998. Yeast physiology and biotechnology. John Wiley & Sons Ltd. Chichester, England
  55. Walker, G.M. and P.V. Dijck. 2006. Physiological and molecular responses of yeasts to the environment, p. 111-152. In Querol, A and G. Fleet (eds.), Yeasts in food and beverages, Springer-Verlag Berlin, Germany
  56. Wenzel, T.J., A. Teunissen, and H. Steensma. 1995. PDAI mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACTI mRNA. Nucleic Acids Res. 23, 883-884 https://doi.org/10.1093/nar/23.5.883
  57. Wolff, S.P. 1994. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxide. Methods Enzymol. 233, 182-189 https://doi.org/10.1016/S0076-6879(94)33021-2