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Abstract

We have developed magnetocardiography (MCG) and impedance magnetocardiography (I-MCG) for detecting heart
disease by using dc-SQUID technology. The MCG system, using low-Tc SQUID, is being applied commercially for

diagnosing heart disease. Using the low-Tc MCG system, many clinical studies on detection of abnormality have been

performed. Furthermore, we have developed a portable MCG system using high-Tc SQUID. For detecting changes in kinetic

impedance in the heart, an I-MCG system has been demonstrated. The I-MCG system could detect the mechanical movement
of the heart. In this report, we review current clinical applications of magnetocardiography and impedance

magnetocardiography.
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L Introduction

In regards to magnetic measurement, there is little
interference from organs such as born organ and
lungs. Magnetocardiography (MCG) has the potential
to detect heart disease, because the magnetic signal
sensed by the MCG includes high-spatial-resolution
information [1, 2]. MCG is a noninvasive, risk-free,
and contact-less technique [3]. Taking up these

advantages, many clinical studies on the clinical
applications of MCG have been published [3, 4].

We first measured an impedance
magnetocardiogram (I-MCG), namely, a record of
magnetic-field changes that are dependent on an AC
current (with constant amplitude) applied to a subject.

In this paper, we describe clinical applications of
the magnetocardiogphy and a new technology,
namely, impedance magnetocardiography.
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II. Magnetocardiography System using Low-Tc
SQUID

Many LTS-MCG systems for studying the
mechanism of heart disease by cardiomagnetic
imaging have been developed [5]. Korea Research
Institute of Standards and Science (KRISS) [6],
SQUID AG [7], Physikalisch-Technische
Bundesanstalt (PTB) [8], Helsinki University [9],
Iwate University [10], and Hitachi Ltd [11]. are some
examples. Figure 1 shows a photo of a commercially
available MCG system produced by Hitachi High-
Technologies Corporation in 2003 [11]. Mapping of
MCG data is performed with a superconducting
quantum interference device (SQUID) above the
patient’s body. The M1CG waveform obtained is very
similar to an electrocardiogram (ECG) signal,
because the source of the field is the same ionic
current. To easily obtain a current distribution with
high spatial resolution, we developed a method for
calculating the current vector (Ix and Iy) from the
derivatives of the normal component (Bz) of the
MCG signals, namely, Ix =dBz/dy and ly =-dBz/dx
[12]. The derivative vector calculated from the
normal component of a magnetic field has a pattern
of peaks immediately above the electrically activated
region. Furthermore, to enable current distribution to
be understood visually, the magnitude of the current

Fig. 1. Magnetocardiography, MC-6400 (Hitachi-High
technologies).

arrows, I= (Ix*+1y?)'"?, is plotted as a contour map.
Using our original current-arrow map (CAM) method,
we can directly obtain current distribution over the
heart.

II1. Clinical Applications of Magnetocardiography

Aiming to make a database of MCGs of normal
subjects, we have started standardization of time
intervals [45]. Although the standardization of MCG
waveforms is not yet completed, we expect that the
three main clinical applications of MCGs are as
follows (listed in Table 1).

Table 1. List of clinical applications  of
magnetocardiography.

Application field Contents with benefits
Medical Screening of cardiac disease
examinations High throughput

High sensitivity

Few restrictions

Monitoring of Noninvasive measurement

growing fetal heart Non-stress test
Completely safe

Evaluation of Prognosis

cardiac treatment Efficacy of catheter

treatments or bypasses

(1) Determination of arrhythmia focus

Before surgery or drugs are used to treat
arrthythmias, the arrhythmic focus has to be
determined so that plans for treatment can be
prepared. Although physicians usually use ECG data
to investigate arrhythmias, it cannot provide an
accurate focal position because ECG signals incur a
great deal of interference from conductivity
differences between tissues such as lungs and bone.
The arrhythmia focus can be determined by several
methods [22, 35-39]. Furthermore, we used an
electrical image of CAM to investigate the-electrical
mechanisms responsible for arrhythmias associated
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with sudden death, such as the long QT syndrome
[13] and Brugada syndrome (Fig. 2) [21][34], and we
were the first to detect an abnormal current
distribution on the right-ventricular outflow tract
(RVOT). It is summarized that MCG provides a new
strategy to diagnose and treat arrhythmias.

| Abnormal current J

Fig. 2. Brugada-syndrome pattern in an MCG.

(2) Early detection of myocardial infarction

Myocardial infarction often causes sudden death.
Early detection is therefore very important. To detect
an infarction, single-photon-emission computed
tomography (SPECT) with stress is frequently used.
With this method, a radioisotope (RI) is injected into
a vein, and the increase in blood flow in the ischemic
area is visualized. On the downside, SPECT is
invasive and, therefore, uncomfortable for the patient.
We applied our MCG visualization technique to the
early stages of ischemic disease and could accurately
detect it non-invasively [14-15, 23, 42-43].

To detect angina pectoris (AP) by using a
light-exercise test, we have developed a current ratio
map (Fig. 3). We performed the master double test
like a step climbing. Two sets of MCG data (taken
after 1 min. and after 5 min. of exercise) for
calculation of the map as shown in Fig. 3(a). By
using the data, we can calculate the current ratio map
for detecting the ischemia like that shown in Figure
3(b). By using the peak in the current ratio map, we
calculate the sensitivity of detecting the ischemia. As
a result, the MCG sensitivity was 82% and the ECG
is 47%.
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Fig. 3. Early detection of angina pectoris by using a

current-ratio map.

(3) Assessment of delivery control in a fetus with

arrhythmia

The mechanical movement of the fetal heart can
be  monitored with  ultrasound. However,
electrophysiological information about the fetal heart
cannot be detected with ECG on the maternal body,
because of large interference caused by fetal skin
(due to its high resistance). Accordingly, we applied
our MCG system to detect fetal arrhythmias [24-26],
and we were the first to measure long QT syndrome
[16—-18] and WPW syndrome [19-20] (Fig. 4).
Furthermore, as their arrhythmias had an abnormal
current distribution, we estimated the arrhythmic
focus from that distribution. The arrhythmic focus
enabled us to time the baby’s delivery and schedule
drug treatment for the neonates. These results show
that MCG system has the potential to accurately
detect fetal arrhythmias.

As shown in Fig. 5, we estimated the fetal dipole
moment during the gestation weeks [31-32]. Using



4 A. Kandori et al.

the dipole moment, we determined fetal current
strength, and a fetal hypertrophy can be detected,
from which a fetal hypertrophy was detected [33].
Furthermore, a pickup coil can be designed by using
the strength [31].

0.408 sec M

(QTe=0.57)
%

Fig. 4. Typical fetal arrhythmic waveforms (long-QT

syndrome and Wolff-Parkinson-White syndrome).
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Fig. 5. Fetal dipole moment during the gestation weeks.

IV. Magnetocardiography System using High-Tc
SQUID

We have also constructed a prototype 51-ch-MCG
system using high-Tc SQUID, which has not yet been
commercialized, to check its system performance

(see Fig. 6) [41, 44]. This compact system with 70
fT*Hz"* (average system noise) could visualize a
current distribution in ischemia patients by using a
signal-averaging technique.

Fig. 6. Prototype 51ch-HTS MCG system.
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Fig. 7. Measurement of impedance magnetocardiogram.
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V. Impedance Magnetocardiography

We recorded an impedance magnetocardiogram
(I-MCG), which depends on a conductivity change
under an induced current [27-28] (see Fig. 7). This
new I-MCG technique can be used to detect blood
circulation in the heart.

We have also developed a low-Tc I-MCG system
with a room-temperature pickup coil [29] as a simpler
means for measuring I-MCG signals. The noise level
of this system for a 10-kHz current is 90 fT Hz '
(Fig. 8). We have developed the first I-MCG system
that combines a high-Tc SQUID with a room-
temperature pickup coil [30]. The I-MCG technique
has been confirmed by another group [40].
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Fig. 8. Impedance-magnetocardiography system using

Cryostat stored
tiquid helium

normal pickup coil.

V1. Summary

We have developed magnetocardiography and
impedance-magnetocardiography ~ for  visualizing
electrophysiological images, which have been applied
to clinical diagnosis. Much clinical significance has
been reported using the technique. The significant
clinical findings will lead to new strategies based on
MCG and I-MCG for diagnosing heart disease.
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