Abstract
We experimentally investigated the transmission characteristics of 400 Gbit/s (10 Gbit/s ${\times}$ 40 channels) WDM signals with 100 GHz channel spacing over 323 km of installed NZ_DSF. The installed fiber has optical properties of 0.28 dB/km attenuation, 4.3 ps/nm/km dispersion, $0.083ps/nm^2/km$ dispersion slope and less than $0.05ps/km^{1/2}$ PMD coefficient. In this experiment, two cases of dispersion compensation schemes, the lumped type and the distributed type, were compared. The results implied that the distributed type dispersion compensation in which dispersion compensation devices are inserted at the end of the each span showed better transmission performance than the lumped one in which dispersion compensation devices are located at the transmitter and receiver sites. From the analysis of the experimental results, we verified that different transmission performance comes from the power penalty induced by XPM in the distributed scheme is lower than the lumped scheme case.