DOI QR코드

DOI QR Code

Nanoparticle Contrast in Magneto-Motive Optical Doppler Tomography

  • Kim, Jee-Hyun (Beckman Laser Institute and Medical Clinic, University of California) ;
  • Oh, Jung-Hwan (Biomedical Engineering Department, University of Texas)
  • 투고 : 2006.07.11
  • 발행 : 2006.09.25

초록

We introduce a novel contrast mechanism for imaging superparamagnetic iron oxide (SPIO) nanoparticles (average diameter ${\sim}100nm$) using magneto-motive optical Doppler tomography (MM-ODT), which combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect the nanoparticles flowing through a glass capillary tube. A solenoid cone-shaped ferrite core extensively increased the magnetic field strength ($B_{max}=1\;T,\;{\Delta}|B|^2=220T^2/m$) at the tip of the core and also focused the magnetic force on targeted samples. Nanoparticle contrast was demonstrated in a capillary tube filled with the SPIO solution by imaging the Doppler frequency shift which was observed independent of the flow rate and direction. Results suggest that MM-ODT may be a promising technique to enhance SPIO nanoparticle contrast for imaging fluid flow.

키워드

참고문헌

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, 'Optical coherence tomography - principles and applications,' Rep. Pro. Phys., vol. 66, pp. 239-303, 2003 https://doi.org/10.1088/0034-4885/66/2/204
  2. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, 'Real-time multi-functional optical coherence tomography,' Opt. Express, vol. 11, pp. 782-793, 2003 https://doi.org/10.1364/OE.11.000782
  3. N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, 'High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography,' J. Opt. Soc. Amer·. A, vol. 22, pp. 552-560, 2005 https://doi.org/10.1364/JOSAA.22.000552
  4. D. P. Dave, T. Akkin, and T. E. Milner, 'Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,' Opt. Lett., vol. 28, pp. 1775-1777, 2003 https://doi.org/10.1364/OL.28.001775
  5. C. G. Rylander, D. P. Dave, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, 'Quantitative phasecontrast imaging of cells with phase-sensitive optical coherence microscopy,' Opt. Lett., vol. 29, pp. 1509-1511, 2004 https://doi.org/10.1364/OL.29.001509
  6. J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, 'Polarization-sensitive optical coherence tomography,' in Handbook Of Optical Coherence Tomography., B. E. Bouma, and G. J. Tearney, eds. (Marcel Dekker, Inc, New York, 2002), pp. 237-274.
  7. Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, 'Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,' Opt. Lett., vol. 22, pp. 64-66, 1997 https://doi.org/10.1364/OL.22.000064
  8. X. J. Wang, T. E. Milner, and J. S. Nelson, 'Characterization of Fluid-Flow Velocity by Optical Doppler Tomography,' Opt. Lett., vol. 20, pp. 1337-1339, 1995 https://doi.org/10.1364/OL.20.001337
  9. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, 'Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,' Opt. Lett., vol. 25, pp. 114-116, 2000 https://doi.org/10.1364/OL.25.000114
  10. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, 'Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 ${\mu}m$,' Opt. Express, vol. 13, pp. 3931-3944, 2005 https://doi.org/10.1364/OPEX.13.003931
  11. M. C. Pierce, B. H. Park, B. Cense, and J. F. de Boer, 'Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography,' Opt. Lett., vol. 27, 1534-1536, 2002 https://doi.org/10.1364/OL.27.001534
  12. D. Q. Piao, and Q. Zhu, 'Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography,' Appl. Opt., vol. 42, pp. 5158-5166, 2003 https://doi.org/10.1364/AO.42.005158
  13. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. J. Toublan, K. S. Suslick, and S. A. Boppart, 'Engineered microsphere contrast agents for optical coherence tomography,' Opt. Lett., vol. 28, pp. 1546-1548, 2003 https://doi.org/10.1364/OL.28.001546
  14. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, 'Nanoshell-enabled photonics-based imaging and therapy of cancer,' Technol. Cancer Res. Treat., vol. 3, pp. 33-40, 2004 https://doi.org/10.1177/153303460400300104
  15. A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, 'Imaging magnetically labeled cells with magnetomotive optical coherence tomography,' Opt. Lett., vol. 30, pp. 747-749, 2005 https://doi.org/10.1364/OL.30.000747
  16. A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, 'Magnetomotive contrast for in vivo optical coherence tomography,' Opt. Express, vol. 13, pp. 6597-6614, 2005 https://doi.org/10.1364/OPEX.13.006597
  17. Y. X. J. Wang, S. M. Hussain, and G. P. Krestin, 'Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging,' Eur. Radio., vol. 11, pp. 2319-2331, 2001 https://doi.org/10.1007/s003300100908
  18. A. K. Fahlvik, J. Klaveness, and D. D. Stark, 'Iron Oxides as Mr Imaging Contrast Agents,' J. Magn. Reson. Imaging., vol. 3, pp. 187-194, 1993 https://doi.org/10.1002/jmri.1880030131
  19. R. Weissleder, A. Bogdanov, E. A. Neuwelt, and M. Papisov, 'Long-Circulating Iron-Oxides for Mr-Imaging,' Adv. Drug Deliv. Rev., vol. 16, pp. 321-334, 1995 https://doi.org/10.1016/0169-409X(95)00033-4

피인용 문헌

  1. imaging of melanoma-implanted magnetic nanoparticles using contrast-enhanced magneto-motive optical Doppler tomography vol.21, pp.6, 2016, https://doi.org/10.1117/1.JBO.21.6.064001