DOI QR코드

DOI QR Code

마이크로 열소자 제작을 위한 고세장비 금속채널의 레이저 가공

Laser micromachining of high-aspect-ratio metallic channels for the application to microthermal devices

  • 오광환 (광주과학기술원 기전공학과) ;
  • 이민규 (광주과학기술원 기전공학과) ;
  • 정성호 (광주과학기술원 기전공학과)
  • Oh, Kwang-Hwan (Department of Mechatronics, Gwangju Institute of Science and Technology) ;
  • Lee, Min-Kyu (Department of Mechatronics, Gwangju Institute of Science and Technology) ;
  • Jeong, Sung-Ho (Department of Mechatronics, Gwangju Institute of Science and Technology)
  • 발행 : 2006.10.25

초록

본 연구에서는 레이저유도 에칭기술을 이용한 스테인레스강의 고세장비 미세채널 제조에 대하여 기술한다. 공정 변수 최적화와 반복에칭을 통하여 높은 세장비를 갖는 미세채널을 제조하였으며 제조된 미세채널은 레이저출력과 에칭용액의 농도를 적절하게 조절함으로써 U 형상과 V 형상 사이의 단면 구조를 가지며 열변형이 없는 우수한 표면 형상을 보였다. 채널과 채널 사이의 간격은 $150{\mu}m$ 또는 그 이하이며 $15{\sim}50{\mu}m$ 범위의 폭을 갖는 10 이상의 고세장비 미세채널이 제조되었다. 레이저출력, 레이저초점의 이송속도, 에칭용액의 농도 등의 공정 변수들이 제조된 채널의 폭, 깊이 그리고 단면 형상에 미치는 영향에 대하여 자세히 보고한다.

A fabrication method fur high-aspect-ratio microchannels in stainless steel using laser-assisted thermochemical wet etching is reported in this paper. The fabrication of deep microchannels with an aspect ratio over ten is realized by applying a multiple etching process with an optimization of process conditions. The cross-sectional profile of the microchannels can be adjusted between rectangular and triangular shapes by properly controlling laser power and etchant concentration. Excellent dimensional uniformity is achieved among the channels with little heat-affected area. Microchannels with a width ranging from 15 to $50{\mu}m$ can be fabricated with an aspect ratio of ten and a pitch of 150 m or smaller. The effects of process variables such as laser power, scan speed, and etchant concentration on the fabrication results, including etch width, depth, and cross-sectional profile are closely examined.

키워드

참고문헌

  1. S. Kawata, H. -B. Sun, T. Tanaka and K. Takada, 'Finer features for functional microdevices,' Nature, Vol. 412, No. 6848, pp. 697-698, 2001 https://doi.org/10.1038/35089130
  2. R. Hopkins, A. Faghri and D. Khrustalev, 'Flat miniature heat pipes with micro capillary grooves,' Journal of Heat Transfer, Vol. 121, pp. 102-109, 1999 https://doi.org/10.1115/1.2825922
  3. Y. Cao, M. Gao, J. E. Beam and B. Donovan, 'Experiments and analyses of flat miniature heat pipes,' Journal of Thermophysics and Heat Transfer, Vol. 11, No. 2, pp. 158-164, 1997 https://doi.org/10.2514/2.6247
  4. A. V. Pattekar and M. V. Kothare, 'A microreactor for hydrogen production in micro fuel cell applications,' Journal of Microelectromechanical Systems, Vol. 13, No. 1, pp. 7-18, 2004 https://doi.org/10.1109/JMEMS.2004.823224
  5. A. V. Pattekar and M. V. Kothare, 'Novel microfluidic interconnectors for high temperature and pressure applications,' Journal of Micromechanics and Microengineering, Vol. 13, No. 2, pp. 337-345, 2003 https://doi.org/10.1088/0960-1317/13/2/324
  6. H. Takagi, R. Maeda, K. Ozaki, M. Parameswaran and M. Mehta, 'Phase transformation type micro pump,' Proceeding of the 5th International Symposium on Micro Machine and Human Science, pp. 199-202, 1994
  7. S. J. Lee, A. Chang-Chien, S. W. Cha, R. O'Hayre, Y. I. Park, Y. Saito and F. B. Prinz, 'Design and fabrication of a micro fuel cell array with 'flip-flop' interconnection,' Journal of Power Sources, Vol. 112, No. 2, pp. 410-418, 2002 https://doi.org/10.1016/S0378-7753(02)00393-2
  8. W. Shi and S. J. Lee, 'Design concepts for directed exit flow in micro fuel cells,' Fuel Cell Science, Engineering and Technology 2004, pp. 243-249, 2004
  9. R. W. Haynes, G. M. Metze, V. G. Kreismanis and L. F. Eastman, 'Laser-photoinduced etching of semiconductors and metals,' Applied Physics Letters, Vol. 37, No. 4, pp. 344-346, 1980 https://doi.org/10.1063/1.91941
  10. Y. -F. Lu, K. -D. Ye, 'Laser-induced etching of polycrystalline $Al_2O_3TiC$ in KOH aqueous solution,' Applied Physics. A, Vol. 62, pp. 43-49, 1996 https://doi.org/10.1007/BF01568086
  11. B. W. Hussey and A. Gupta, 'Laser-assisted etching of $YBa_2Cu_3O_{7-{\delta}}$,' Applied Physics Letters, Vol. 54, No. 13, pp. 1272-1274, 1989 https://doi.org/10.1063/1.101488
  12. R. Nowak, S. Metev and G. Sepold, 'Nd:YAG-laserinduced wet chemical etching of titanium and stainless steel,' Sensors and Actuators A, Vol. 51, pp. 41-45, 1995 https://doi.org/10.1016/0924-4247(96)80050-1
  13. R. Nowak and S. Metev, 'Thermochemical laser etching of stainless steel and titanium in liquids,' Applied Physics. A, Vol. 63, pp. 133-138, 1996 https://doi.org/10.1007/BF01567640
  14. K. Piglmayer and H. Schieche, 'Laser-induced etching of tungsten,' Applied Surface Science, Vol. 109, No. 110, pp. 184-188, 1997 https://doi.org/10.1016/S0169-4332(96)00657-5
  15. L. Lin, R. Ponnappan and J. Leland, 'High performance miniature heat pipe,' International Journal of Heat and Mass Transfer, Vol. 45, pp. 3131-3142, 2002 https://doi.org/10.1016/S0017-9310(02)00038-8
  16. M. L. Berre, S. Launay, V. Sartre and M. Lallemand, 'Fabrication and experimental investigation of silicon micro heat pipes for cooling electronics,' Journal of Micromechanics and Microengineering, Vol. 13, pp. 436-441, 2003 https://doi.org/10.1088/0960-1317/13/3/313
  17. C. Gillot, Y. Avenas, N. Cezac, G. Poupon, C. Schaeffer and E. Fournier, 'Silicon heat pipes used as thermal spreaders,' IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 2, pp. 332-339, 2003 https://doi.org/10.1109/TCAPT.2003.815092
  18. G. V. Treyz, R. Beach and R. M. Osgood, Jr., 'Rapid direct writing of high-aspect-ratio trenches in silicon,' Applied Physics Letters, Vol. 50, No. 8, pp. 475-477, 1987 https://doi.org/10.1063/1.98178
  19. S. W. Son, M. K. Lee, K. H. Oh and S. H. Jeong, 'Fabrication of titanium microchannels using laser-assisted thermochemical wet etching,' Journal of Laser Applications, Vol. 18, No. 2, pp. 131-137, 2006 https://doi.org/10.2351/1.2164473
  20. B. W. Hussey, B. Haba and A. Gupta, 'Role of bubbles in laser-assisted wet etching,' Applied Physics Letters, Vol. 58, No. 24, pp. 2851-2853, 1991 https://doi.org/10.1063/1.104756