DOI QR코드

DOI QR Code

기계적 밀링공정에 의해 제조된 Bi0.4Sb1.6Te3 소결체의 열전특성

Thermoelectric Properties of Bi0.4Sb1.6Te3 Sintered Body Fabricated by Mechanical Grinding Process

  • 이길근 (부경대학교 공과대학 신소재공학부) ;
  • 신승철 (부경대학교 공과대학 신소재공학부) ;
  • 김우열 (부경대학교 공과대학 신소재공학부) ;
  • 하국현 (한국기계연구원)
  • Lee, Gil-Geun (Division of Materials Science and Engineering, College of Engineering, Pukyong National University) ;
  • Shin, Sung-Chul (Division of Materials Science and Engineering, College of Engineering, Pukyong National University) ;
  • Kim, Woo-Yeol (Division of Materials Science and Engineering, College of Engineering, Pukyong National University) ;
  • Ha, Gook-Hyun (Korea Institute of Machinery and Materials)
  • 발행 : 2006.10.28

초록

The present study is to analyze the thermoelectric properties of $Bi_{0.4}Sb_{1.6}Te_3$ thermoelectric materials fabricated by the mechanical grinding process. The $Bi_{0.4}Sb_{1.6}Te_3$ powders were prepared by the combination of mechanical milling and reduction treating methods using simply crushed pre-alloyed $Bi_{0.4}Sb_{1.6}Te_3$ powder. The mechanical milling was carried out using the tumbler-ball mill and planetary ball mill. The tumbler-ball milling had an effect on the carrier mobility rather than the carrier concentration, whereas, the latter on the carrier concentration. The specific electric resistivity and Seebeck coefficient decreased with increasing the reduction-heat-treatment time. The thermal conductivity continuously increased with increasing the reduction-heat-treatment time. The figure of merit of the $Bi_{0.4}Sb_{1.6}Te_3$ sintered body prepared by the mechanical grinding process showed higher value than one of the sintered body of the simply crushed powder.

키워드

참고문헌

  1. A. Majumdar : Science, 303 (2004) 777 https://doi.org/10.1126/science.303.5656.303
  2. C. B. Vining : Nature, 413 (2001) 577 https://doi.org/10.1038/35096551
  3. B. C. Sales : Science, 295 (2002) 1248 https://doi.org/10.1126/science.1069895
  4. K. Uemura and I. Nishida : Thermoelectric Semiconductor and its Application, Nikkankougyo Shinbunsya, Tokyo (1985) 13
  5. C. Wood : Energy Convers. Mgmt, 24 (1984) 317 https://doi.org/10.1016/0196-8904(84)90012-8
  6. G. Wiedemann and R.Franz : Ann. Phys., 89 (1853) 497
  7. K. Uemura and I. Nishida : Thermoelectric Semiconductor and its Application, Nikkankougyo Shinbunsya, Tokyo (1985) 149
  8. J. P. Fleuria, A. Borshchevsky and T. Caillat : Proc. 15th Int. Conf. on Thermoelectrics (edited by T. Caillat), IEEE, Piscataway (1996) 91
  9. L. D. Hicks and M. S. Dresselhaus : Phy. Rev., B47 (1993) 12727
  10. R. Venkatasubramanian : Nature, 413 (2001) 519 https://doi.org/10.1038/35096551
  11. I. S. Kim, C. W. Hwang and B. S. Chun : J. Kor. Inst. of Met. & Mater., 35 (1997) 258
  12. G. G. Lee, M. Miyajima, G. H. Ha, B. K. Kim and D. W. Lee : J. Kor. Inst. of Met. & Mater., 37 (1999) 64
  13. G. G. Lee and H. I. Park : J. Kor. Powder Metall. Inst., 7 (2000) 6
  14. M. Miyajima, K. Takagi, H. Okamura, G. G. Lee, Y. Noda and R. Watanabe : Proc. 15th Int. Conf. on Thermoelectrics (edited by T. Caillat), IEEE, Piscataway (1996) 18
  15. M. Miyajima, G. G. Lee, A. Kawasaki and R. Watanabe : Proc. of the 4th Int. Sym. on Functionally Graded Materials (edited by I. Shiota and Y. Miyamoto), Elsevier, Amsterdam (1997) 527
  16. J. H. Yu, S. C. Bae, G.G.Ha, B.K.Kim and G.G.Lee : J. Kor. Powder Metall. Inst., 12 (2005) 387 https://doi.org/10.4150/KPMI.2005.12.6.387
  17. K. Hasezaki, Y. Morisaki, H. Araki, H. Kitagawa and E. Tanabe : Mater. Trans., 47 (2006) 383 https://doi.org/10.2320/matertrans.47.383
  18. Y. Horio and A. Inoue : Mater. Trans., 47 (2006) 1412 https://doi.org/10.2320/matertrans.47.1412
  19. D. E. Vanghan : Brit. J. App. Phys., 12 (1961) 414 https://doi.org/10.1088/0508-3443/12/8/312
  20. J. S. Benjamin and T.E. Volin : Metal. Trans., 5 (1974) 1876
  21. H. Scherrer and S. Scherrer : CRC Handbook of Thermoelectrics (edited by D. M. Roew), CRC Press, New York (1995) 211