Wavelet Lifting based ECG Signal Compression Using Multi-Stage Vector Quantization

다단계 벡터 양자화를 이용한 웨이브렛 리프팅 기반 ECG 압축

  • Park, Seo-Young (Dept. of Radio and Communications Engineering, Chungbuk National University) ;
  • Jeong, Gyu-Hyeok (Dept. of Radio and Communications Engineering, Chungbuk National University) ;
  • Kim, Young-Ju (Dept. of Radio and Communications Engineering, Chungbuk National University) ;
  • Lee, In-Sung (Dept. of Radio and Communications Engineering, Chungbuk National University) ;
  • Joo, Gi-Ho (Dept. of Informations and Communications Engineering, Paichai University)
  • 박서영 (충북대학교 전파통신공학과) ;
  • 정규혁 (충북대학교 전파통신공학과) ;
  • 김영주 (충북대학교 전파통신공학과) ;
  • 이인성 (충북대학교 전파통신공학과) ;
  • 주기호 (배재대학교 정보통신공학과)
  • Published : 2006.11.25

Abstract

In this paper, the biomedical signal compression method, which is combined with the multi-stage vector quantization and wavelet lifting scheme, is proposed. It utilizes the property of wavelet coefficients that give emphasis on approximation coefficients. The transmitted codebook index consists of the code vectors obtained by wavelet lifting coefficients of ECG and error signals from the 1024 block length, respectively. Each codebook is adaptively updated by the method comparing to the distance of input codevectors with candidate codevectors by using an pre-defined threshold value. The proposed compression method showed blow 3% in term of PRD and 276.62 bits/sec in term of CDR.

ECG와 같은 생체 신호를 장시간 저장하기 위해서는 많은 메모리를 필요로 한다. 따라서 본 논문에서는 다단계 벡터양자화 기법을 적용하여 ECG의 웨이브렛 리프팅 계수를 압축하는 방법을 제안한다. 첫 번째 단계의 코드북은 ECG의 웨이브렛 리프팅 계수를 양자화하고 두 번째 단계 코드북은 오차 신호의 웨이브렛 리프팅 계수에 대해 J개의 후보 코드벡터를 구해 양자화하여 복원 오차를 최소화하도록 하였다. 두 코드북의 코드벡터는 웨이브렛 계수의 에너지 분포특성을 이용해서 고주파 성분의 계수를 제거함으로써 코드북의 검색 시간과 복잡성을 감소 시켰다. 실험 결과 CDR이 276.62 bit/sec에서 3%이하의 PRD를 얻었다.

Keywords

References

  1. S. J. alaedcline, C. Hutchens R., Stattan. and W. Coberly, 'ECG data compression techniques- A Unified approach,' IEEE Trans. Biomed. Eng., vol. 37, pp. 329-343, Apr. 1990 https://doi.org/10.1109/10.52340
  2. Zhitao Lu, Dong Youn Kim, and William A. Pearlman, 'Wavelet Compression of ECG Signals by the Set Partitioning in Hierarchical Trees Algorithrn,' IEEE Trans. Biomed . Eng., Vol. 47, NO.7, pp. 849-856, July 2000 https://doi.org/10.1109/10.846678
  3. Miaou SG, Yen HL, Lin CL, 'Wavelet-Based ECG Compression Using Dynamic Vector Quantization With Tree Codevectors in Single Codebook,' IEEE Trans. Biomed. Eng., vol. 47, NO. 7, July 2002 https://doi.org/10.1109/TBME.2002.1010850
  4. 이승훈, 윤동한, '웨이브렛 변환 이론 및 적용', 보성각, pp. 474-520, 2. 2004
  5. B. A. Rajoub, 'An Efficient Coding Algorithm for the Compression of ECG Signals Using the Wavelet Transform,' IEEE Trans. Biomed Eng., vol. 49, pp. 355-362, Apr. 2002 https://doi.org/10.1109/10.991163
  6. Khalid Sayood, 'Introduction to Data Compression', Second Edition, Morgan Kauffmann 2000
  7. Yaniv Zigel, Atnon Cohen, Amos Katz, 'The Weighted Diagnostic Distortion Measure for the ECG Signal Compression', IEEE Trans. Biomed Eng., vol. 47, NO. 11, Nov. 2000 https://doi.org/10.1109/TBME.2000.880093
  8. Homepage of the MIT-BIT AHA database in the Harvard-MIT Division of Health Sciences and Technology: : http://physionet.icu.ac.kr/physiobank/database