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Abstract

This paper introduces an efficient CRC logic partitioning algorithm to design pipelined parallel CRC circuits aimed at
improving speed performance. Focusing on the cases that the input data width is greater than the polynomial degree,
equations are derived to divide the parallel CRC logic and decide the length of the pipeline stage. Through design
experiments on different types of parallel CRC circuits, we have found a significant reduction in delay by adopting our
approach.

Keywords : Parallel CRC, pipeline, logic partitioning, logic—level

1. Introduction number of error bits as the degree of the polynomial,

no matter how big data sizes are. Accordingly, the

Cyclic Redundancy Check (CRC) is an error- ~ scheme is most suitable for high speed
detection scheme used in communication systems. For communication systems. Most recent high speed
data transmission on high speed medium and long serial interconnect technologies such as Gigabit

distance links, most errors tend to be multiple-bit Ethernet, PCI-Express, FiberChannel, and InfiniBand,
bursts. The CRC scheme that can detect the same etc. go for over 100 Gbps rather than 10 Gbps;

‘EAElY, S HFEF that run at that higher rate. o
(Dept. of Computer Science & Engineering,
Hanyang University)

* A, FFAAREATY ATH FArAzg in serial domain by using Linear Feedback Shift
- AT A

(Dept. of Intelligent IT System Research Center,

therefore, it becomes crucial to design CRC circuits

Traditionally, CRC circuits have been implemented
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parallel CRC architectures and tried to speed them up
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addition, in [6] a design method based on the Galois
field theory has been proposed. A generic VHDL
code of parallel CRC circuits for any generator
polynomial and data width has been presented, but
there still remains the problem that delay can be
increased pertaining to the number of parallel input
bits™ claimed a better speed by ameliorating the
approaches presented in [6] and [7], however, their
optimized equations are restricted to cases where the
input data-width is less than or equal to the
polynomial degree.

This paper presents an effective method to improve
the speed by partitioning CRC logic and using
pipelined architecture for the case where the input
data width is greater than or equal to the polynomial
degree. A basic method to implement parallel CRC is
introduced section II. Efficient partitioning
techniques of the CRC logic and decision algorithm
for the size of pipeline registers are described in

in

section IIl. Parallel CRC circuits are implemented and
their delays are evaluated in section IV followed by
conclusions in section V.

II. Parallel CRC Algorithm

In order to generate CRC codes, network and
communication systems usually make use of several
standardized polynomials and perform modulo? binary
divisions. Modulo2 binary divisions can be calculated
by XOR (exclusive-or) operations and implemented
by using an LFSR and XOR gates in serial domain.
Fig. 1 shows a primitive polynomial and its hardware
implementation, and it may be noted that the CRC
circuits must be designed to afford high input data rate.

The basic ideas for designing parallel CRC circuits
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. where, for i = 0, 1, 2, ...
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are explained in detail by using determinants based
Galois Field theory 8] and by
precalculating XOR combinations to be Iloaded in
LFSR after a number of shifts in [9]. As an LFSR is
a discrete-time linear time-invariant (LTI) system,

on the n

the current value in the register and the next value
to be newly updated in each of w clock cycles can
be defined as C = [cn-1 - ¢l ¢0]T and C' = [¢'n-1
- ¢'l ¢'0]T, respectively, for a data width w and a
With  these

definitions, a recursive formula was identified in [8]

generating  polynomial degree n.

as follows:

C'=F"'"®(C® D)
)
(® : multiplication, ® : X OR)

where parallel input data D = [dy = ds dp [ 0 - OFF
for w<n and [dy; - d; )" for w=mn and n x n
parallel CRC transformation matrix Ft

r.
Pui 10 0
P2 01 0
i 00 - 1
po 00 - 0

, n—1, p; are the coefficients
of generating polynomial.

Let R; and x; be the i register of LFSR and ¢; @
d, respectively. We can obtain Table 1 from the
equation (1) and Fig. 1. Finally, as shown in Fig. 2, a
basic parallel CRC circuit can be easily implemented
with a w-bit input data register (DinReg), an a-hit
CRC code register (CRCReg) and XOR combinational
logic (XOR Logic) based on the Table 1.

T H S A R S A
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Fig. 1.

Ply) =1+ +y2+yf® (ITU TSSOl 2/st LFSR
LFSR for Ply) = 1 + y° + y + y® (ITU_TSS).

(382)
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E 1. Py =1+y5 +y12+yl6 w= 162 HHd

CRC XOR =g =
Table 1. Example XOR Combinations of (P}) = 1 + y5 +
y12 + y16 w = 16) Parallel CRC.

Ris X5 Dxs @ xu @ x D xs

Ru Xu D Xs D x0 D X6 @ X2

Ris Xz D XD x D xs D x

Rz Xe DX @ xs @ xs D X

Ry Xu ® X% D xr D x;

Ro X0 PX% P Dxs DX Bxy Dxs D x5
Ry (XD % DX Dxu®DxsDxwDPxs ®xe
R | xD X DX DxisDxe®x®x: D x;
R; XD Pxi P D xi @ x
Rs X DX @ xu X D x, P x5

Rs X DPxi @ xoDx D xz

Ry X DxoDx®xDx

Rs Xs D X0 D x5 D x11 D X7

Ry Xr D X D X0 D X5

R, Xs D X1 D % D x5

Ry X D xz D X5 @ x4

1I. Parallel CRC Logic Pipelining

If w < n, the logic-level of the cn'tical.path of the -

XOR Logic depends on the feedback logic part of the
n-bit CRC_Code. However, if w > n, the logic-level
will depend on the w-bit input data logic part. The
clock frequency of the CRC circuit is determined by
the critical path of the feedback logic of the CRC_Code
no matter how large w is. Thus, for w > n, we
divide the XOR Logic into a feedback logic of the
CRC_Code and an input data logic, and split the
input data logic in several stages to make the
logic-level of the critical path of each stage sublogic
be smaller than that of the feedback logic of the
CRC _Code.

1. XOR Logic Partitioning

The XOR Logic in Fig. 2 can be divided into CRC
Code XOR Logic (CX),Data XOR Logic (DX), and
XORArray as shown in Fig. 3.

mojzatol FRE N HE CRC 32 44
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Fig. 2. Basic parallel CRC architecture.
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Fig. 3. Partitioned XOR" Logic.

Focusing on the cases where w > n, let us forrnulate
the solutions for implementing CX and DX.

Fori=0 1, .., n1, and time ¢, let paralle! input data
Din, output of CX Cr, output of DX Dr and
CRC_Code be

Din = [diny-; ding-z ... dingl’,
Cf‘ = [Cn—j Cn-2 ... Co]T,
.Dr = [dn-] dn—Z cer do]T

and
CRC_Code = [cre,_cre,_, ...creg] r

then we have

CRC Code(t+1)=Cr(t)® Drt),t>0) (2)

where CRC_Code(1) for t = 0 is the initial value.

¥ we assume that Din = [0 0 ..0)%, then Dr = [0 0
.. 0. As long as Din = [0 0 ..0), the data width
constraints are meaningless. Therefore, from equations
(1) and (2), we can derive an equation only for CX.
D in equation (1) and Dr(t) in the equation (2) can
be removed, and C and C’ in equation (1) can be
replaced by CRC_Code(t) and CRC_Code(t+1),
respectively. Thus, we can obtain an implementing
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equation for CX:
Or=F"® CRC_Code 3

As noted above, the size of Din w is greater than n.
The Din needs to be divided info groups of n-bit to
make use of equation (1). If w is divisible by n, in other
words, w = n * k for a positive integer k, we can make
k groups each of which includes n-bit as follows:

Dir! = [diny1 difyz ... dingnl"
Dirlz = [dl.rlw~n~] dl‘nw—n—z e dinw—Zyl]T
Dir® = [dify-tevnt dil-gepnz . dingl’.
If w is not divisible by n, in other words, w = n *
(k-1) + j for a positive integer j, the number of
elements in the last group Dir* becomes less than n,
and we have to adjust it to be n by including j zeros
as follows:
Dir = [diny-c-1n-1 diNw-g-1yn-2 ... ding | 0 ... O]T.
To derive a formula for DX using Diri for i = I, 2,
., k, we consider that a value loaded in an LFSR after
n clock cycles becomes the initial value of the LFSR
for Dir’™. It we let V = [Uns Unz ... ugl” be the n-bit
value to be loaded in the LFSR, we can derive an
equation D'in' = F* @ (Din' @ V) from equation (1),
where the initial value of V is [0 ... 0]". Thus we have:

T
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Partitioned DXs.
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Dint = F'® Din' ®[0.. 01") = F' ® Dir,
D' = F* ® (DmZ ® Dinl),

Dirf = F' ® (Din* & D'il’™).
Now that D’ir* is Dr, we can finally obtain an
equation to implement the DX as follows:

Dr=F ® (Din" @ (F" ® (Din! .. .
(F" ® (Dif ® (F" ® Di)))) ... .. ). @

2. Data XOR Logic Partitioning

If DX is partitioned, it will consist of Sub-Logics
and registers as shown in Fig. 4 How many stages
DX is divided into and how many logic-levels each
DX Sub-Logic includes are the key challenges to
speed up the circuits by pipelining the parallel CRC.
We propose an efficient algorithm to determine the
number of DX Sub-Logics, the logic-level, and the

size of stage registers.

(1) Logic—level Partitioning

If the logic-level of the critical path of DX in Fig. 3
is less than that of CX, DX does not need to be
partitioned. Therefore, a comparative analysis of the
logic-levels of CX and DX must first be made.

If we suppose that logic is synthesized as a completed

binary tree and let L be the logic-level of the

critical path, L can be found by the equation (5):

L= round up (log,N) 5)

CRC Codde

OB X
b\ eih
dn » »
o 7 " CRC Code
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Subw-Logie g b
) &g
) 4
dy oL,
7
XOR Array
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Table 2. Logic-Levels of CX and DX according to w.
CRC16-C CRC32
Type of CRC CRCI6-A CRC16-B (PCI-E (Bthernet, ATM, PCI-E
-Express, ernet, , -Express,
ype o (ITU-TSS)® (HDLC)" S - press
) InfiniBand, etc.) InfiniBand, etc.)
Generating : Trxce vl o450y
I+ +x %8 T+ +x%er Textxled?ex®
Polynomial * I A R
XOR Logic cX DX cX DX CX DX CX DX,
Measure N L N L N L N L
R |\l 4|85 144|295 154 |2u4]|5]| 17 5 17 5
w 64 | 12| 4 |55 2|4 |56 |12]4|247|6]| 19 5 A 6
Wit) | 93 | 9|4 lmw|7|8|s3|lw|7|w0|la4|7|7| 20| 5 | 6@ | 7
26 | 10 4 |12 8| 13| 4 |15 8|10 4 |146]8| 5 138 8
T 3 2% ay =3 of because of the differences in routing complexity and

Table 3. Example combinations of Logic-Level.

CRCI16-A &
w =37
Case 1
Case 2
Case 3
Case 4
Case 5

Logic-level of -

DX Sub-Logic(1)
1

Logic-level of

DX Sub-Logic(0)
4

3
2
1
0

[S23 NI ESL R

where N is the number of inputs which affects the
output of the critical path [10]. We have obtained Ns
from the equation (4) and analyzed Ls for 3 types of
16-bit CRCs and a 32-bit CRC as shown in Table 2.

As DX Sub-Logic(®), shown in Fig. 4, shares the
XOR Array part with CX, the logic-level of DX
Sub-Logic(0) must be less than the CX’s logic-level
and the logic-levels of other DX Sub-Logics must be
less than the CX's logic-level plus '1'to allow the
clock frequency to be determined by the CX.

Let us take an example. For CRCI6-A with w = 32,
we had CX’s L = 4 and DX's L = 5 from Table 2.
It is seen that DX must be split into two sub-logics
because DX'’s L is larger than CX's L and is not
over twice of CX's L. There are 5 possible cases as
shown in Table 3. Although the logic-level of DX
Sub-Logic(0) is the same as the logic-level of CX if
Case 1 is chosen, the critical path’s delay of DX
Sub-Logic(0) might be bigger than that of CX

(385)

fan-outs by synthesis and placement & routing.
Similarly, as DX Sub—Logic‘(J ) and CX + XORArray
are the same logic-level if Case 5 is chosen, such
delay problems can occur. Thus, we can obviate the
delay problems by choosing one of Case 2, Case 3 or
Case 4 . :

(2) Register Size Decision

For the net-list with large number of gates, a
systematic approach must be provided in inserting
the registers to the proper places. In this subsection,
considering that the number of nets in a logic block
decreases monotonically from the inputs to an output,
we introduce a simple technique to estimate the size
of each stage register.

Let us define some parameters based on Fig. 4 as
follows:
d; : output of DX Sub-Logic(0),
DL(:) : logic-level of DX Sub-Logic(i),
SBIng, : inputs affecting d; of inputs of DX
Sub-Logic(i),
S - size of SBIng»,
RS size of Reggy,

where i =0, 1, ... , k-l andj =20, I, .., n-L
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Then, from equation (5), we obtain ‘ just plugging in all the output expressions.

S = round up yen / 277 IV. Performance Evaluation
Sgi-p = round up Sz / 229,

We have implemented Basic and Pipelined parallet
CRC circuits for w = 32, 64, 128 and 256,
respectively. The circuits were mapped by Synopsys
Design Analyzer with TSMC 025 pm process logic
where DL(i) is given by the logic-level partitioning cell library and performed timing analysis by Prime

Sgo = round up (Sgp / 22D,

as mentioned in the subsection (1). and Sjx-n is Time. Table 4 shows performance comparisons by
obtained from equation (4). Thus, S;y can be Delay and Delay Reduction (Red.).
computed as: CRCI16-A with w = 256 and CRC16-C with w =

" 256 have been structured with 3 pipeline stages, and

Sio = round up (Sgy / M) for i <k-1 - (6) all of the rest of the circuits have been structured

with 2 pipeline stages. As shown in Fig. 6, the delays

For example, if DX is split into two DX Sub-Logics of the Basic parallel CRC circuits are increasing, since

with DL(]) = 2 and DL(O) = 2 and S(myj) is 10 for an the critical path of DX becomes longer as w

output der, SBINiex ) = t0 = dex the logic network in the  jncreases. The delays of the Pipelined parallel CRC

DX is implemented as shown in Fig. 5 because S circuits, however, vary only a little, because DX is

= round up (Stexp / 2" = 3. Applying equation (6)  artitioned and the critical path of the circuit is
to all outputs, we can finally obtain RS(i) as follows: determined by CX affected slightly by w.

RS(i) =8, + 8,5+ +S(-1 )

V. Conclusion
As logic networks and stage registers are constructed

for each of outputs, the area overhead is relatively In this paper, an efficient method to design high
high. Therefore., appropriate area optimization algorithm performance pipelined parallel CRC circuits by
by finding registers shared is needed. Heuristics are partitioning logic circuits and deciding the number of
required because the optimization is typical NP-hard the pipeline stages is proposed. After dividing CRC
problem, and in this paper we rely on the CAD tool by logic into the CRC code feedback logic and the input

DX Sub-Logic(?) DX Sub-Logic(®)
~ -——-—""L——‘ 11—
. N dn»l
Pl
otn < g % 8 ;57 o
3 R )

L [y~__— ' |
SBlng.r SBIfiee) N

Seex,0y = 10) ey =3)

Iy 5 78 o
Fig. 5. Implementation Example.

—— do
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Table 4. Performance Comparisons.
Type of CRC CRC16-A CRC16-B CRC16-C CRC32
Architecture | Basic®|  Pipelined® Basic Pipelined Basic |  Pipelined Basic Pipelined
M Delay® | Delay | Red® | Delay | Delay | Red. | Delay Delay | Red. | Delay | Delay | Red.
easure
' (ns) (ns) (%) (s) | (ns) (%) (ns) (ns) (%) (ns) (ns) (%)
32 270 228 | 155 | 322 228 | 2919 323 303 619 290 288 069
w 64 306 | 234 | 2353 | 332 | 243 | 268l 306 225 | 2623 | 34 255 | 2130
(bit) 1B | 339 231 318 | 347 238 | 3141 350 245 | 000 | 368 291 2092
256 344 218 | 4323 - 399 263 | 409 | 392 218 | 4439 | 428 2Y4 31.31
“Basic: Basic Parallel CRC circuit (Ref to Fig. 2) ' ‘
®Pipelined: Pipelined Parallel CRC circuit (Ref. to Fig. 4)
‘Delay: Data arrival time on critical path
Red.: Delay Reduction ,
. CRCI6-A . CRCI6-B :
4 ' 4
5° 53 o
2 ’ 2 . .
/\/ \/,\\_/
oL o L
32 64 128 256 32 64 128 256
w (bits) w (bits)
CRCI6C
4 v -
3 0
- i 2 . [
\/\\__/
\/l\—/
o L
32 64 128 256
w (bits)

a2 6.
Fig. 6.

7|2 82 ys Wolx 2ol =2
Basic vs Pipelined.

data logic, we split the input data logic In several

pipeline stages, each with the shorter critical

path, and then insert stage registers. Compared with
basic parallel CRC circuits, the delay is reduced by
up to 44%.
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(2]

(387)
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