References
- Pentland, A., Moghaddam, B., Stamer, T.: View-based and modular eigenspaces for face Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (1994) 84-91
- Turk, M., Pentalnd, A.: Eigenfaces for recognition. J. Cognitive Neurosci. Vol. 3. No. 1. (1991) 71-86 https://doi.org/10.1162/jocn.1991.3.1.71
- Fukunaga, K.: Introduction to Statistical Pattern Recognition. 2nd edn. Academic Press, New York (1990)
- Belhumeour, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence. Vol. 19. No.7. (1997) 711-720 https://doi.org/10.1109/34.598228
- Yu, R., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition. Vol. 34. No. 10. (2001) 2067-2070 https://doi.org/10.1016/S0031-3203(00)00162-X
- Yang, J., Zhang, D., Frangi, A.F., Yang, J.: Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence. Vol. 26. No. 1. (2004) 131-137 https://doi.org/10.1109/TPAMI.2004.1261097
- Li, M., Yuan, B.: 2D-LDA: A Statistical Linear Discriminant Analysis for Image Matrix. Pattern Recognition Letters. Vol. 26. (2005) 527-532 https://doi.org/10.1016/j.patrec.2004.09.007
- Wang, L., Wang, X., Zhang, X., Feng, J.: The equivalence of two-dimensional PCA to line-based PCA. Pattern Recognition Letters. Vol. 26. (2005) 57-60 https://doi.org/10.1016/j.patrec.2004.08.016