Abstract
In this paper, we present two methods of correcting bit errors in constant amplitude multi-code (CAMC) CDMA, which uses the redundant bits only. The first method is a parity-based bit correction with hard-decision, where the received signals despread into n two-dimensional structure with both horizontal parity and vertical parity. Then, an erroneous bit is corrected for each $4{\times}4$ pattern. The second method is a turbo decoding, which is modified from the decoding of a single parity check product code (SPCPC). Experimental results show that, in the second method, the redundant bits in CAMC can be fully used for the error correction and so they are not really a loss of channel bandwidth. Hence, CAMC provides both a low peak-to-average power ratio and robustness to bit errors.