An Agent-based Approach for Distributed Collaborative Filtering

분산 협력 필터링에 대한 에이전트 기반 접근 방법

  • 김병만 (금오공과대학교 컴퓨터공학부) ;
  • 이경 (한국정보통신대학교 공학부) ;
  • ;
  • 여동규 (금오공과대학교 컴퓨터공학부)
  • Published : 2006.11.15

Abstract

Due to the usefulness of the collaborative filtering, it has been widely used in both the research and commercial field. However, there are still some challenges for it to be more efficient, especially the scalability problem, the sparsity problem and the cold start problem. In this paper. we address these problems and provide a novel distributed approach based on agents collaboration for the problems. We have tried to solve the scalability problem by making each agent save its users ratings and broadcast them to the users friends so that only friends ratings and his own ratings are kept in an agents local database. To reduce quality degradation of recommendation caused by the lack of rating data, we introduce a method using friends opinions instead of real rating data when they are not available. We also suggest a collaborative filtering algorithm based on user profile to provide new users with recommendation service. Experiments show that our suggested approach is helpful to the new user problem as well as is more scalable than traditional centralized CF filtering systems and alleviate the sparsity problem.

협력 필털링은 그 유용성으로 인해 현재 학문적으로나 상업적으로 널리 사용되고 있지만 확장성 문제, 평가 데이타의 희박성 문제, 초기 평가 문제 둥을 안고 있다. 본 논문에서는 이러한 문제들을 일부 해결하기 위해 에이전트 간 협력에 기초한 분산 협력필터링 방법을 제안하였다. 제안 방법에서는 사용자의 평가정보를 에이전트가 지역 데이타베이스에 보관하고 이 정보를 친구들에게만 전파하는 방법을 사용함으로써 사용자 증가에 따른 확장성 문제를 해결하고자 하였다. 그리고 평가 데이타 부족에 따른 추천질 저하를 줄이기 위해 친구 에이전트의 의견을 반영하는 방법을 사용하였고 새로운 사용자에 대해서도 추천이 가능토록 하기 위해 사용자 프로파일을 이용한 협력필터링 방법을 사용하였다. 실험결과, 본 제안 방법이 확장성뿐만 아니라 데이타 희박성 문제 및 새로운 사용자 문제에도 도움이 됨을 확인할 수 있었다.

Keywords

References

  1. Lawrence S. and Giles, CL, Accessibility of Information on the Web, Nature, Vol. 400, 1999 https://doi.org/10.1038/21987
  2. Montaner M., Lopez, B., de la Rosa, J.Ll, A Taxonomy of Recommender Agents on the Internet, Artificial Intelligence Review, Vol. 19, 2003 https://doi.org/10.1023/A:1022850703159
  3. Claypool, M., Gokhale, A, Mirana, T., Murnikv, P., Netes D. and Sartin, M., Combing Content-Based and Collaborative Filters in an Online Newspaper, In Proc. of Workshop on Recommender Systems Implementation and Evaluation, 1999
  4. Wasfi, A. M. A., Collecting User Access Patterns for Building user Profiles and Collaborative Filtering, In Proc. of Int. Conf. on Intelligent User Interfaces, 1999 https://doi.org/10.1145/291080.291091
  5. Balabanovic, M. and Shoham, Y., Fab : Content-based collaborative recommendation, CACM, Vol.40, No.3, 1997 https://doi.org/10.1145/245108.245124
  6. Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker, J. and Riedl, J., Combininig Collaborative Filtering with Personal Agents for Better Recommendations, In Proc. of the AAAI-99, 1999
  7. Popescul, A., Ungar, L. H., Pennock, D. M. and Lawrence, S., Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments, In Proc. of Conf. on UAI, 2001
  8. Kim, B.M., Li, Q., Park, C. S., and Kim, S., A New Approach for Combining Content-based and Collaborative Filters, Journal of Intelligent Information Systems, Vol. 27, No.1, 2006 https://doi.org/10.1007/s10844-006-8771-2
  9. Li, Q., Kim, B. M., and S. H. Myaeng, Clustering for Probabilistic Model Estimation for CF, the 14'th International World Wide Web Conference (WWW 2005), 2005 https://doi.org/10.1145/1062745.1062890
  10. Li, Q., Kim, B. M., Guan, D. H. and Oh, D., A Collaborative Music Recommender based on Audio Features, In Proc. Of ACM SIGIR-04, 2004 https://doi.org/10.1145/1008992.1009106
  11. Han, P., Xie, B., Yang F., and Shen, R., A Novel Distributed Collaborative Filtering Algorithm and Its Implementation on P2P Overlay Network, In Proc. of PAKDD 2004, 2004
  12. Pitsilis, C. and Marshall, L., A Proposal for Trust-enabled P2P Recommendation Systems, Technical Report Series CS-TR-910, University of Newcastle upon Tyne, 2005
  13. Tveit, A., Peer-to-peer based Recommendations for Mobile Commerce, In Proc. of the First International Mobile Commerce Workshop, 200l https://doi.org/10.1145/381461.381466
  14. Chawathe, Y, Ratnasamy, S. and Breslau, L., Making Gutella-like P2P Systems Scalable, In Proc. of ACM SIGCOMM03, 2003 https://doi.org/10.1145/863955.864000
  15. Plaxton, C. G., Rajaraman, H. and Richa, A. W., Accessing Nearby Copies of Replicated Objects in a Distributed Environment, In Proc. of Ninth annual ACM symposium on Parallel algorithms and architectures, 1997 https://doi.org/10.1145/258492.258523
  16. Ali, K. and Wijnand, V.-S., TiVo: Making Show Recommendations Using a Distributed Collaborative Filtering Architecture, In Proc. of KDD04, 2004 https://doi.org/10.1145/1014052.1014097
  17. Somlo, G., and Howe. A. E., Using Web Helper Agent Profiles in Query Generation, In Proc. of AAMAS 2003, 2003 https://doi.org/10.1145/860575.860706
  18. Sarwar, B., Karypis, G., Konstan, J and Riedl, J., Item-based Collaborative Filtering Recommendation Algorithms, In Proc. of WWW Conference, 2001 https://doi.org/10.1145/371920.372071
  19. Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P. and Riedl, J., GroupLens: An Open Architecture for Collaborative Filtering of Netnews, In Proc. of ACM Conf. on Computer-Supported Cooperative Work, 1994 https://doi.org/10.1145/192844.192905
  20. Breese, J. S., Heckerman, D. and Kardie, C., Empirical Analysis of Predictive Algorithms for Collaborative Filtering, In Proc. of UAI 98, 1998 https://doi.org/10.1145/245108.245123
  21. Hofmann, H., Latent Semantic Models for Collaborative Filtering, ACM transactions on Information Systems, Vol. 22, No.1, 2004 https://doi.org/10.1145/963770.963774
  22. Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J., Incremental SVD-based Algorithms for Highly Scalable Recommender Systems, In Proc. of the 5th International Conference in Computers and Information Technology, 2002
  23. Xue, G.-H., Lin, C., Yang, Q., Xi, W., Zeng, H.-J., Yu, Y. and Chen, Z., Scalable collaborative filtering using cluster-based smoothing, In Proc. of ACM SIGIR05, 2005 https://doi.org/10.1145/1076034.1076056
  24. Li, Q. and Kim, B. M., Constructing User Profiles for Collaborative Recommender. System, Lecture Notes in Computer Science (LNCS), Vol. 3007, 2004