초소형 60 GHz LTCC 전력 증폭기 모듈

A Very Compact 60 GHz LTCC Power Amplifier Module

  • 이영철 (국립목포해양대학교 해양전자 통신공학부)
  • 발행 : 2006.11.30

초록

본 논문에서는 저온 소성 세라믹(LTCC)에 기초한 SiP 기술을 이용하여 60 GHz 무선 통신을 위한 송신기용 초소형 전력 증폭기 LTCC모듈을 설계 및 제작하여 그 특성을 측정하였다. 60 GHz대역에서 LTCC 다층 기판과 전력 증폭기 MMIC의 상호 연결 손실을 줄이기 위해 와이어 본드와 기판 사이의 천이를 최적화하였고, MMIC 집적을 위한 고 격리 구조를 제안하였다. 와이어 본드 천이의 경우, 와이어의 인덕턴스를 감소시키기 위해 매칭 회로의 설계와 와이어 상호간의 간격을 최적화하였다. 또한 상호 연결 불연속 효과로 인한 전계의 방사를 억제하기 위해 코프라나 와이어 본드 구조를 이용하였다. 고 격리 모듈 구조를 위하여, LTCC 기판 내부에 DC 전원 배선을 내장시키고 비아로 그 주위를 차폐를 시켰다. 5층의 LTCC 기판을 사용하여 제작된 전력 증폭기 LTCC모듈의 크기는 $4.6{\times}4.9{\times}0.5mm^3$이고, $60{\sim}65GHz$ 대역에서 이득과 P1dB 출력 전력은 각각 10 dB와 11 dBm이다.

In this paper, using low-temperature co-fired ceramic(LTCC) based system-in-package(SiP) technology, a very compact power amplifier LTCC module was designed, fabricated, and then characterized for 60 GHz wireless transmitter applications. In order to reduce the interconnection loss between a LTCC board and power amplifier monolithic microwave integrated circuits(MMIC), bond-wire transitions were optimized and high-isolated module structure was proposed to integrate the power amplifier MMIC into LTCC board. In the case of wire-bonding transition, a matching circuit was designed on the LTCC substrate and interconnection space between wires was optimized in terms of their angle. In addition, the wire-bonding structure of coplanar waveguide type was used to reduce radiation of EM-fields due to interconnection discontinuity. For high-isolated module structure, DC bias lines were fully embedded into the LTCC substrate and shielded with vias. Using 5-layer LTCC dielectrics, the power amplifier LTCC module was fabricated and its size is $4.6{\times}4.9{\times}0.5mm^3$. The fabricated module shows the gain of 10 dB and the output power of 11 dBm at P1dB compression point from 60 to 65 GHz.

키워드

참고문헌

  1. Keiichi Ohata et al., '1.25 Gbps wirelss gigabit ethernet link at 60 GHz-Band', IEEE MTT-S Int. Microwave Symposium Digest, pp. 373-376, 2003
  2. Atsushi Yamada et al., '60 GHz ultra compact transmitter/receiver with a low phase noise PLLoscillator', IEEE MTT-S Int. Microwave Symposium Digest, pp. 2035-2038, 2003
  3. C. Bornholdt et al., '60 GHz millimeter-wave broadband wireless access demonstrator for the next-generation mobile internet', Optical Fiber Communication Conference, pp. 148-149, 2002
  4. Athanasios et al., 'IST project: broadway-the way to broadband access at 60 GHz', Proceedings of Personal Wireless Communications, pp. 219-221, 2003
  5. Charles Q. Scrantom, 'LTCC technology: where we are and where we're going-II', 1999 IEEE MTT-s Symposium on Technologies for Wireless Applications Digest, pp. 193-200, 1999
  6. T. Krems et al., 'Avoiding cross talk and feedback effects in packaging coplanar millimeter-wave circuits', IEEE MTT-S Int. Microwave Symposium Digest, pp. 1091-1094, 1998
  7. T. P. Budka, 'Wide-bandwidth millimeter-wave bond-wire interconnects', IEEE Trans. on Microwave Theory and Techniques, vol. 49, no. 4, pp. 715-718, 2001 https://doi.org/10.1109/22.915447
  8. F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, 'Modeling and characterization of the bonding-wire interconnection', IEEE Trans. on Microwave Theory and Techniques, vol. 49, no. 1, pp. 142-150, 2001 https://doi.org/10.1109/22.899975
  9. S. Yun, H. Lee, 'Parasitic impedance analysis of double bonding wires for high-frequency integrated circuit packaging', IEEE Microwave and Guided Wave Letters, vol. 5, pp. 296-298, 1995 https://doi.org/10.1109/75.410403
  10. T. Krems et al., 'Millmeter-wave performance of chip interconnections using wire bonding and flip chip', IEEE MTT-S Int. Microwave Symposium Digest, pp. 247-250, 1996
  11. 김봉수, 김광선, 은기찬, 변우진, 송명선, '40GHz 대역 고정통신용 광대역 LTCC 수신기 모듈', 한국전자파학회논문지, 16(10), pp. 1050-1058, 2005년 10월
  12. CST MICROWAVE STUDIO, CST Inc., [Online] Available
  13. William H. Haydl, 'On the use of vias in conductor-backed coplanar circuits', IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 6, pp. 1571-1577, 2002 https://doi.org/10.1109/TMTT.2002.1006419
  14. Nirod K. Das, 'Methods of suppression or avoidance of parallel-plate power leakage from conductor-backed transmission lines', IEEE Trans. on Microwave Theory and Techniques, vol. 44, no. 2, pp. 169-181, 1996 https://doi.org/10.1109/22.481565
  15. A. Panther, C. Glaser, M. G. Stubbs, and J. S. Wight, 'Vertical transitions in low temperature co-fired ceramics for LMDS applications', IEEE MTT-S Int. Microwave Symposium Digest, vol. 3, pp. 1907-1910, 2001
  16. F. J. Schmuckle et al., 'LTCC as MCM substrate: design of strip-Line structures and flip-chip interconnections', IEEE MTT-S Int. Microwave Symposium Digest, vol. 3, pp. 1093-1096, 2001
  17. David M. Pozar, Microwave Engineering, John Wiley & Sons, 1998
  18. I. J. Bahl et al., Microstrip Antennas, Artech House, 1982
  19. 이영철, '밀리미터파 SiP 응용을 위한 기생 공진모드 억제', 대한전자파학회논문지, 17(9), pp. 883-889, 2006년 9월