DOI QR코드

DOI QR Code

A Study on the Impedance Scaled Tele-Nanomanipulation in a Nanoscale Virtual Environment

나노 스케일 가상환경에서의 나노-원격 조작의 임피던스 스케일링에 관한 연구

  • 김성관 (공주대학교 기계자동차공학부)
  • Published : 2006.11.01

Abstract

In a haptic interface system with a nanoscale virtual environment (NVE) using an atomic force microscope (AFM), impedance scaling is important. In order to explicitly derive the relationship between performance and impedance scaling factors, a nanoscale virtual coupling (NSVC) concept and a selection method of scaling factors of velocity (or position) and force are introduced. An available scaling factor region is represented based on Llewellyn's absolute stability criteria and the physical limitation of the haptic device. Experiments have been performed for tele-nanomanipulation tasks such as positioning, indenting and nanolithography with available force scaling factor in the NVE.

Keywords

References

  1. Ahn, K-H., 2003, 'Nanotechnology,' Journal of the KSME, Vol. 43, No. 3, pp. 32-38
  2. Sitti, M. and Hashimoto, H., 2003, 'Teleoperated Touch Feedback from the Surfaces at the Nanoscale: Modeling and Experiments,' IEEE/ASME Trans. on Mechatronics, Vol. 8, No. 2, pp. 287-298 https://doi.org/10.1109/TMECH.2003.812828
  3. Hollis, R. L., Salcudean, S. and Abraham, D. W., 1990, 'Toward a Tele-Nanorobotic Manipulation System with Atomic Scale Force Feedback and Motion Resolution,' in Proc. of the IEEE Int. Conf. Micro Electro Mechanical Systems, pp. 115-119 https://doi.org/10.1109/MEMSYS.1990.110261
  4. Falvo, M. et al., 1995, 'The NanoManipulator: A Teleoperator for Manipulating Materials at the Nanometer Scale,' in Proc. of the Int. Symp. Science and Technology of Atomically Engineered Materials, Richmond, VA, pp. 579-586
  5. Guthold, M. et al., 2000, 'Controlled Manipulation of Molecular Samples with the NanoManipulator,' IEEE/ASME Trans. on Mechatronics, Vol. 5, No. 2, pp.189-198 https://doi.org/10.1109/3516.847092
  6. Vogl, W., Sitti, M., Ehrenstrasser, M. and Zah, M.F., 2004, 'Augmented Reality User Interface for Nanomanipulation using Atomic Force Microscopes,' in Proc. of the EuroHaptics 2004, Technische Universitaet in Munich, Germany
  7. Vogl, W., 2003, Telepresence at the Nano Scale: Augmented Reality Interface for Scanning Probe Microscopes, Tech. Univ. of Munich, MSc Diploma Thesis
  8. Li, G., Xi, N., Yu, M. and Fung, W.-K., 2004, 'Development of Augmented Reality System for AFM-Based Nanomanipulation,' IEEE/ASME Trans. on Mechatronics, Vol. 9, No. 2, pp. 358-365 https://doi.org/10.1109/TMECH.2004.828651
  9. Hwang, D. Y., Blake Hannaford, Choi, H. R., 2001, 'Identification of Feasible Scaled Teleoperation Region Based on Scaling Factors and Sampling Rates,' Transactions of the KSME, Vol. 15, No. 1
  10. Nain, A. S., Goldman, D. H. and Sitti, M., 2004, ?'Three-Dimensional Nanoscale Manipulation and Manufacturing Using Proximal Probes: Controlled Pulling of Polymer Micro/Nanofibers,' in Proc. of the IEEE Int. Conf. Robotics and Automation (ICRA 04), Vol. 1, pp. 434-439. https://doi.org/10.1109/ROBOT.2004.1307188
  11. Li, G., Xi, N., Yu, M., Salem, F, Wang, D. and Li, J, 2003, 'Manipulation of Living Cells by Atomic Force Microscopy,' in Proc. of the IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 862-867 https://doi.org/10.1109/AIM.2003.1225455
  12. Cavusoglu, M.C., Sherman, A. and Tendick, F., 2002, 'Design of Bilateral Teleoperation Controllers for Haptic Exploration and Telemanipulation of Soft Environments,' IEEE Trans. on Robotics and Automation, Vol. 18, No. 4, pp. 641-647 https://doi.org/10.1109/TRA.2002.802199
  13. Colgate J. E., and Brown, J., 1994, 'Factors Affecting the Width of a Haptic Display,' in Proc. of the IEEE Int. Conf. Robotics and Automation (ICRA 94), IEEE CS Press, pp. 3205-3210 https://doi.org/10.1109/ROBOT.1994.351077
  14. Adams, R. J. and Hannaford, B., 1999, 'Stable Haptic Interaction with Virtual Environments,' IEEE Trans. on Robotics and Automation, Vol. 15, No. 3, pp. 465-474 https://doi.org/10.1109/70.768179
  15. Miller, B. E., Colgate, J. E., and Freeman, R. A., 2000, 'Guaranteed Stability of Haptic Systems with Nonlinear Virtual Environments,' IEEE Trans. on Robotics and Automation, Vol. 16, No. 6, pp. 712-719 https://doi.org/10.1109/70.897782
  16. Ryu, J.-H., Kim, Y.-S. and Hannaford, B., 2004, 'Sampled- and Continuous - Time Passivity and Stability of Virtual Environments,' IEEE Trans. on Robotics, Vol. 20, No. 4, pp. 772-776 https://doi.org/10.1109/TRO.2004.829453
  17. Hogan, N., 1989, 'Controlling Impedance at the ManlMachine Interface,' in Proc. of the IEEE Int. Conf. Robotics and Automation, Vol. 3, Scottsdale, AZ, IEEE CS Press, pp. 1626-1631 https://doi.org/10.1109/ROBOT.1989.100210
  18. Salcudean, S. E., et al., 1999, 'Bilateral Matched Impedance Teleoperation with Application to Excavator Control,' IEEE Control Systems Magazine, Vol. 19, No. 6, pp. 29-37 https://doi.org/10.1109/37.806913
  19. Colgate, J. E., 1993, 'Robust Impedance Shaping Telemanipulation,' IEEE Trans. on Robotics and Automation, Vol. 9, No. 4, pp. 374-384 https://doi.org/10.1109/70.246049
  20. Goldfarb, M., 1998, 'Dimensional Analysis and Selective Distortion in Scaled Bilateral Telemanipulation,' in Proc. of the IEEE Int. Conf. Robotics and Automation (ICRA 98), Leuven, Belgium, pp.1609-1641 https://doi.org/10.1109/ROBOT.1998.677379
  21. Whitesides, Ostuni, G, E., Takayama, S., Jiang, X. and Ingber, D., 2001, 'Soft Lithography in Biology and Biochemistry,' Annual Review of Biomedical Engineering, Vol. 3, pp. 335-373 https://doi.org/10.1146/annurev.bioeng.3.1.335