DOI QR코드

DOI QR Code

Acid Fermentation Characteristic of Food Wastes According to the Organic Loading Rate

유기물부하에 따른 음식물찌꺼기의 산발효 특성

  • Park, Jin-Sik (Department of Health & Environmental, Kyungwoon University) ;
  • Ahn, Chul-Woo (Environmental Team, Korea National Parks Authrority) ;
  • Jang, Seong-Ho (Department of Environmental System Engineering, Pusan National University)
  • 박진식 (경운대학교 보건환경전공) ;
  • 안철우 (국립공원관리공단 환경팀) ;
  • 장성호 (부산대학교 지역환경시스템공학)
  • Published : 2006.10.31

Abstract

This study has been conducted to optimum operating conditions for effective acid fermentation according to OLR(organic loading rate) in the mesophilic and thermophilic acid fermentation process. The results are summarized as follows. In order to obtain reasonable acid fermentation efficiency in performing acid fermentation of food wastes in thermophilic condition, organic loading rate was required below 20 gVS/L.d. As $SCOD_{Cr}/TKN,\;SCOD_{Cr}/T-P$ of thermophilic acid fermented food wastes In organic loading rate 20 gVS/L.d were 18.9, 73.4 respectively, it was possible to utilize as external carbon source for denitrification in sewage treatment plant after solid-liquid separation as well as co-digestion of fermented food wastes and sewage sludge.

Keywords

References

  1. 윤종수, 2005, 음식물류폐기물 관리대책 현재와 미래, 첨단환경기술, 35-39
  2. ATV(독일하수도협회), 1970, Lehr-und Handbuch der ABWASSER TECHNIK Band III Zwelte Auflage, 155-156
  3. 김수생, 2003, 액상폐기물처리 강의록, 동아대학교 1-20
  4. 최동원, 1998, 우리나라 주방 폐기물의 혐기성 소화와 모델링에 관한 연구, 한국과학기술연구원 석사학위 논문, 1-4
  5. 신항식, 한선기, 송영채, 이채영, 2001, MUSTAC공정을 이용한 음식물쓰레기의 처리, 한국폐기물학회지, 18(1), 43-50
  6. 김도희, 김인수, 1998, 고온 혐기성 소화에서의 동력학 상수의 결정 및 VFA 의 분해 경향에 관한 연구, 한국폐기물학회지, 15(3), 184-190
  7. 효성에바라 환경엔지니어링 주식회사, 1998, 하수처리장을 이용한 음식물쓰레기의 병합처리, 폐기물 자원화 학회지, 8(2), 21-27
  8. Zoetemeyer, R. J., J. C. Heuvel and A. Cohen, 1982, pH influence on acidogenic dissimilation of glucose in an anaerobic digestor, Wat. Res., 16, 303-311 https://doi.org/10.1016/0043-1354(82)90190-7
  9. Kisaalita, W. S. and H Siegrist, 1987, Acidogenic fermentation of lactose, Biotechnology and Bioengineering, 30, 88-95 https://doi.org/10.1002/bit.260300113
  10. Noike, T., G. Endo, J. Chang, J. Yaguchi and J. Matsmoto, 1985, Characteristics of carbohydrate degradation and the rate limiting step in anaerobic digestion, Biotech. Bioeng., 27, 1482-1489 https://doi.org/10.1002/bit.260271013
  11. Breure, A. M., K. A. Mooijman and J. C. Andel, 1986, Protein degradation in anaerobic digestion : influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatin, Appl. Microbiol. Biotechnol., 24, 426-431 https://doi.org/10.1007/BF00294602
  12. Horiuchi, J. I., T Shimizu, K. Tada, T. Kanno and M. Kobayashi, 2002, Selective Production of Organic Acids in Acid reactor by pH Control, Bioresource Technology, 82, 209-213 https://doi.org/10.1016/S0960-8524(01)00195-X
  13. Gluoke, C. G., 1973, Bioconversion of energy studies at the University of California (Berkeley), Proceedings of the Bioconversion Energy Research Conference, 58-78
  14. 백병천, 이창기, 송영채, 선항식, 채소룡, 오세은, 2002, 음식물쓰레기의 혐기성 산발효에 대한 유기물 부하 및 희석율 영향, 한국 폐기물 학회지, 19(6), 722-729
  15. 고경숙, 1999, 유기물부하가 낮은 하수처리장의 처리효율 개선과 탈질, 동아대학교 대학원 박사논문, 23-35