DOI QR코드

DOI QR Code

Effects of bacterial LPS and DNA on the induction of IL-1β, IL-10 and IL-12 by mouse peritoneal macrophages in vitro

  • Samad, D. Abdel (Department of Microbiology and Immunology, Faculty of Medicine, American University) ;
  • Abdelnoor, AM (Department of Microbiology and Immunology, Faculty of Medicine, American University)
  • 발행 : 2006.06.30

초록

The capacities of bacterial DNA, extracted from Salmonella typhimurium, and lipopolysaccharide (LPS), extracted from Salmonella minnesota, to activate mouse peritoneal macrophages in vitro were compared. Activation was assessed by estimating e levels of 3 cytokines, IL-10, IL-12, and $IL-1{\beta}$, at time intervals of 3, 6, 9, and 24 h after addition of LPS and/or DNA to macrophage cultures. Cytokine levels in culture supernatants were determined by enzyme-linked immunosorbent assay (ELISA) and cytokine mRNA levels were estimated based on band intensity in cultured cells by reverse transcriptase-polymerase chain reaction (RT-PCR). Results obtained demonstrated the ability of DNA and LPS to elicit increased production of all 3 cytokines as compared to controls. In the amount tested, LPS appeared to be a more potent inducer of IL-12, and $IL-1{\beta}$, whereas DNA induced higher levels of IL-10. DNA and LPS, used in combination, exhibited neither an additive nor a synergistic effect. Rather, an antagonist effect appeared to occur. RT-PCR results correlated well with ELISA.

키워드

참고문헌

  1. Abdelnoor AM, Joukhadar RA. (2002) Protective effects of immunization with Salmonella typhimurium lipopolysaccharide and genomic DNA in mice. J. Endotoxin Res. 8, 200.
  2. Aderem A, Ulevitch RJ. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787. https://doi.org/10.1038/35021228
  3. Anderson KV. (2000) Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12, 13-19. https://doi.org/10.1016/S0952-7915(99)00045-X
  4. Anonymous. (2005) National Center for Biotechnology Information (NCBI), Bethesda. Website://www.ncbi.nlm.nih.gov/;Taxonomy Browser, Mus musculus interleukin 12p35 subunit.
  5. Ballas ZK, Rasmussen WL, Krieg AM. (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 157, 1840-1845.
  6. Bauer S, Kirischning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB. (2001) Human TLR9 confers reponsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. U.S.A. 98, 9237-9242. https://doi.org/10.1073/pnas.161293498
  7. Chu RS, Askew D, Noss EH, Tobian A, Krieg AM, Harding CV. (1999) CpG oligodeoxynucleotides down-regulate macrophage class II antigen processing. J. Immunol. 163, 1188-1194.
  8. Crabtree TD, Jin L, Raymond DP, Pelletier SJ, Houlgrave CW, Gleason TG. (2001) Preexposure of murine macrophages to CpG Oligonucleotide results in a biphasic Tumor necrosis factor alpha response to subsequent lipopolysaccharide challenge. Infect. Immun. 69, 2123-2129. https://doi.org/10.1128/IAI.69.4.2123-2129.2001
  9. Diks SH, Van Deventer SJH, Peppelenbosch MP. (2001) Lipopolysaccharide recognition, internalisation, signalling and other cellular effects. J. Endotoxin Res. 7, 335-348.
  10. Filion MC, Filion B, Reader S, Menard S, Phillips NC. (2000) Modulation of interleukin 12 synthesis by DNA lacking the CpG motif and present in a mycobacterial cell wall complex. Cancer Immunol. Immunother. 49, 325-334. https://doi.org/10.1007/s002620000121
  11. Flesch IEA, Hess JG, Huang S, Aguet M, Rothe J, Bluethmann H. (1995) Early intrleukin-12 production by macrophages in response to mycobacterial infection depends on interferon gamma and tumor necrosis factor alpha. J. Exp. Med. 181, 1615-1621. https://doi.org/10.1084/jem.181.5.1615
  12. Gao JJ, Xue Q, Papsian CJ, Morrison DC. (2001) Bacterial DNA and lipopolysaccharide induce synergistic production of TNF-$\alpha$ through a post-transcriptional mechanism. J. Immunol. 166, 6855-6860.
  13. Gao JJ, Zuvanich EG, Xue Q, Horn DL, Silverstein R, Morrison DC. (1999) Bacterial DNA and LPS act in synergy in inducing nitric oxide production in RAW 264.7 Macrophages. J. Immunol. 163, 4095-4099.
  14. Gray PW, Glaister D, Chen E, Goeddel DV, Pennica D. (1986) Two interleukin 1 genes in the mouse: cloning and expression of the cDNA for murine interkeukin $1{\beta}$. J. Immunol. 137, 3644-3648.
  15. Hajjar AM, O'Mahoney DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB. (2001) Functional interactions between TLR2 and TLR1 and TLR6 in response to phenol-soluble modulin. J. Immunol. 166, 15-19.
  16. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745. https://doi.org/10.1038/35047123
  17. Hessle C, Andersson B, Wold AE. (2000) Gram-positive bacteria are potent inducers of monocytic interleukin-12(IL-12) while Gram-negative bacteria preferentially stimulate IL-10 production. Infect. Immun. 68, 3581-3586. https://doi.org/10.1128/IAI.68.6.3581-3586.2000
  18. Huang LY, Krieg AM, Eller N, Scott DE. (1999) Induction and regulation of Th1-inducing cytokines by bacterial DNA, lipopolysaccharide, and heat-inactivated bacteria. Infect. Immun. 67, 6257-6263.
  19. Hume DA, Underhill DM, Sweet MJ, Ozinsky AO, Liew FY, Aderem A. (2001) Macrophages exposed continuously to lipopolysaccharide and other agonists that act via Toll-like receptors exhibit a sustained and additive activation state. BMC Immunol. 2, 11. https://doi.org/10.1186/1471-2172-2-11
  20. Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S. (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J. Immunol. 166, 5688-5694.
  21. Kirschning CJ, Wesche H, Ayres TM, Rothe M. (1998) Human Toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188, 2091-2097. https://doi.org/10.1084/jem.188.11.2091
  22. Klinmann DM, Barnhart KM, Conover J. (1999) CpG motifs as immune adjuvants. Vaccine 17, 19-25. https://doi.org/10.1016/S0264-410X(98)00151-0
  23. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546-549. https://doi.org/10.1038/374546a0
  24. Krieg AM. (1999) Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides. Biochim. Biophys. Acta 1489, 107-116.
  25. Krieg AM. (2000) The role of CpG motifs in innate immunity. Curr. Opin. Immunol. 12, 35-43. https://doi.org/10.1016/S0952-7915(99)00048-5
  26. Krieg AM. (2002) CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709-760. https://doi.org/10.1146/annurev.immunol.20.100301.064842
  27. Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, Giese T, Engelmann H, Endres S, Krieg AM, Hatmann G. (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026-3037. https://doi.org/10.1002/1521-4141(2001010)31:10<3026::AID-IMMU3026>3.0.CO;2-H
  28. Liu J. (2000) CGRP inhibits LPS-induced IL-12 release from macrophages, mediated by cAMP pathway. Immunology 101, 61-67. https://doi.org/10.1046/j.1365-2567.2000.00082.x
  29. Medzhitov R, Janeway C. (2000) Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89-97. https://doi.org/10.1034/j.1600-065X.2000.917309.x
  30. Mocellin S, Panelli MC, Wang E, Nagorsen D, Marinocla FM. (2003) The dual role of IL-10. Trends Immunol. 24, 36-43. https://doi.org/10.1016/S1471-4906(02)00009-1
  31. Rigato O, Silva E, Kallas EG, Brunialti MK, Martins PS, Salomao R. (2001) Pathogenetic aspects of sepsis and possible targets for adjunctive therapy. Curr. Drug Targets Immune Endocr. Metabol. Disord. 1, 13-30. https://doi.org/10.2174/1568008013341794
  32. Schoenhaut DS, Chua AO, Wolitzky AG, Quinn PM, Dyer CM, McComas W. (1992) Cloning and expression of murine IL-12. J. Immunol. 148, 3433-3440.
  33. Sester DP, Stacey KJ, Sweet MJ, Beasley SJ, Cronau SL, Hume DA. (1999) The actions of bacterial DNA on murine macrophages. J. Leuk. Biol. 66, 542-548.
  34. Takasuka N, Tokunaga T, Akagawa KS. (1991) Preexposure of macrophages to low doses of lipopolysaccharide inhibits the expression of tumor necrois factor-$\alpha$ but not of IL-$1{\beta}$ mRNA. J. Immunol. 146, 3824-3830.
  35. Todt J, Sonstein J, Polak T, Seitzman GD, Hu B, Curtis JL. (2000) Repeated intratracheal challenge with particulate antigen modulates murine lung cytokines. J. Immunol. 164, 4037-4047.
  36. Yi AK, Yoon JG, Hong SC, Redford TW, Krieg AM. (2001) Lipopolysaccharide and CpG DNA synergize for tumor necrosis factor-alpha production through activation of NF-kappaB. Int. Immunol. 13, 1391-1404. https://doi.org/10.1093/intimm/13.11.1391
  37. Zhang Y, Shoda LK, Brayton KA, Estes DM, Palmer GH, Brown WC. (2001) Induction of interleukin-6 and interleukin-12 in bovine B lymphocytes, monocytes, and macrophages by a CpG oligodeoxynucleotide (ODN 2095) containing the GTCGTT motif. J. Interferon Cytokine Res. 21, 871-881. https://doi.org/10.1089/107999001753238123