References
- H. Ecker, M. Lux and B. Lachmann, The role of alveolar macrophages in surfactant turnover. An experimental study with metabolite VIII of bromhexine, Lung., 161, 213-218 (1983) https://doi.org/10.1007/BF02713866
- S. Nagaoka and Y. Kase, Pharmacological study of ambroxol (NA872), Japanese Pharmacology and Therapeutics., 9, 127-136 (1981)
- E. Houtmeyers, R Gosselink, G Gayan-Ramirez and M. Decramer, Effects of drugs on mucus clearance, Eur Respir J., 14, 452-467 (1999)
- D. Nowak, A Antczak, M. Krol, P. Bialasiewicz and T. Pietras, Antioxidant properties of Ambroxol, Free Radic Bioi Med., 16, 517-522 (1994) https://doi.org/10.1016/0891-5849(94)90130-9
- B. Yang, D.F. Yao, M. Ohuchi, M. Ide, M. Yano, Y. Okumura and H. Kido, Ambroxol suppresses influenza-virus proliferation in the mouse airway by increasing antiviral factor levels, Eur. Respir J., 19, 952-958 (2002) https://doi.org/10.1183/09031936.02.00253302
- J. Gil and U. Thurnheer, Morphometric evaluation of ultrastructural changes in type II alveolar cells ofrat lung produced by bromhexine, Respiration., 28, 438-456 (1971) https://doi.org/10.1159/000192830
- P. Cerutti and Y. Kapanci, Effects of metabolite VIII of bromexine (Na 872) on type II epithelium of the lung: an experimental and morphological study with reference to surfactant secretion, Respiration., 37, 241-251 (1979) https://doi.org/10.1159/000194035
- P. Von Wichert, U. Bavendamm, M. von Teichmann, G. Muller, E. Thalheim, A Wilke and U. Wiegers, Increased incorporation of fatty acids into phospholipids of lungs and livers of rabbits under the influence of bromhexine and ambroxol, Naunyn Schmiedebergs Arch Pharmacol., 297, 269273 (1977) https://doi.org/10.1007/BF00509271
- H.R. Wirtz, Effect of ambroxol on surfactant secretion and synthesis in isolated type II alveolar cells, Pneumologie., 54, 278-283 (2000) https://doi.org/10.1055/s-2000-4452
- J.B. Laoag-Femandez, A.M. Fernandez and T. Maruo, Antenatal use of ambroxol for the prevention of infant respiratory distress syndrome, J. Obstet Gynaecol Res., 26, 307-312 (2000) https://doi.org/10.1111/j.1447-0756.2000.tb01327.x
- R.R. Wauer, G. Schmalisch, H. Hammer, S. Buttenberg, H. Weigel and M. Huth, Ambroxol for prevention and treatment of hyaline membrane disease, Eur. Respir J. Suppl., 3, 57S-65S (1989)
- T. Seki, R Matsumura and H. Kohei, A clinico-pharmacological study on trans-(2amino-3,5-dibromobenzylamino) cyclohexanolhydrochloride, Japanese Journal of Clinical Pharmaccology and Therapeutics., 8, 25-31 (1977) https://doi.org/10.3999/jscpt.8.25
- N. Ishiguro, C. Senda, W, Kishimoto, K. Sakai, Y. Funae and T. Igarashi, Identification of CYP3A4 as the predominant isoform responsible for the metabolism of ambroxol in human liver microsomes, Xenobiotica., 30, 71-80 (2000) https://doi.org/10.1080/004982500237839
- A.D. Rodrigues, E.M. Roberts, D.J. Mulford, Y. Yao and D. Ouellet, Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily, Drug Metab Dispos., 25, 623-630 (1997)
- S. Zhou, S. Yung Chan, B. Cher Goh, E. Chan, W. Duan, M. Huang and H.L. McLeod, Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs, Clin Pharmacokinet., 44, 279-304 (2005) https://doi.org/10.2165/00003088-200544030-00005
- A Galetin, H. Burt, L. Gibbons and J.B. Houston, Prediction of time-dependent CYP3A4 drug-drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition, Drug Metab Dispos., 34, 166-175 (2006) https://doi.org/10.1124/dmd.105.006874
- J.C. Gorski, D.R. Jones, B.D. Haelmer-Daniels, M.A. Hamman, E.M.Jr. O'Mara and S.D. Hall, The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin, Clin Pharmacol Ther., 64, 133-143 (1998) https://doi.org/10.1016/S0009-9236(98)90146-1
- M.H. Botterblom, T.J. Janssen, P. Guelen and T.B. Vree, Rapid and sensitive determination of ambroxol in human plasma and urine by high-performance liquid chromatography, J Chromatogr., 421, 211-215 (1987) https://doi.org/10.1016/0378-4347(87)80400-0
- M.L. Rocci and W.J. Jusko, LAGRAN program for area and moments in phannacokinetic analysis, Comp. Prog. In. Biomed., 16, 203-209 (1983) https://doi.org/10.1016/0010-468X(83)90082-X
- L.Z. Benet, C.L. Cummins and C.Y. Wu, Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data, Curro Drug Metab., 4, 393-398 (2003) https://doi.org/10.2174/1389200033489389
- C.L. Cummins, W, Jacobsen and L.Z. Benet, Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP 3A4, J. Pharmacol Exp. Ther., 300, 1036-1045 (2002) https://doi.org/10.1124/jpet.300.3.1036
- K.A. Rodvold, Clinical pharmacokinetics of clarithromycin, Clin Pharmacokinet., 37, 385-398 (1999) https://doi.org/10.2165/00003088-199937050-00003
- R.A. Yeates, H. Laufen, T. Zimmermann and T. Schumacher, Phannacokinetic and pharmacodynamic interaction study between midazolam and the macrolide antibiotics, erythromycin, clarithromycin, and the azalide azithromycin, Int. J. Clin Pharmacol. Ther., 35, 577-579 (1997)
- N. Akiko, N. Masahiro, Y. Hayato, N. Noriko, N. Takuo, M. Hiroyoko, M. Takashi and N. Masahiro, Effect of Clarithromycin on the pharmacokinetics of cabergoline in healthy controls and in patients, J. Pharmacol. Sci., 100, 59-64 (2006) https://doi.org/10.1254/jphs.FP0050711
Cited by
- Enhancement of lung levels of antibiotics by ambroxol and bromhexine vol.15, pp.3, 2019, https://doi.org/10.1080/17425255.2019.1578748