DOI QR코드

DOI QR Code

Effect of Clarithromycin on the Pharmacokinetics of Ambroxol in Rats

  • Lee, Chong-Ki (Department of Medical Management, Chodang University Mooan, Korea) ;
  • Choi, Jun-Shik (College of Pharmacy Chosun University)
  • Published : 2006.06.21

Abstract

This study investigated the effect of clarithromycin on the pharmacokinetics of ambroxol in rats. The pharmacokinetic parameters of ambroxol in rats were determined after the oral administration of ambroxol (12 mg/kg) in the presence or absence of clarithromycin (5 or 10 mg/kg). Compared with the control (given ambroxol alone), coadministration of clarithromycin significantly (p<0.05 at 5 mg/kg; p<0.01 at 10 mg/kg) increased the area under the plasma concentration-time curve (AUC), peak plasma concentrations $(C_{max})$ and absorption rate constant $(K_a)$ of ambroxol. Clarithromycin increased the AUC of ambroxol in a dose dependent manner within the dose range of 5 to 10 mg/kg. The absolute bioavailability (AB%) of ambroxol in the presence of clarithromycin was significantly higher than that of the control (p<0.05 at 5 mg/kg; p<0.01 at 10 mg/kg), and the relative bioavailability (RB%) of ambroxol with clarithromycin was increased by 1.32-to 1.71-fold. However, there were no significant changes in time to reach peak concentration $(T_{max})$ and terminal half-life $(T_{1/2})$ of ambroxol in the presence of clarithromycin. Coadministration of clarithromycin enhanced the bioavailability of ambroxol, which may be due to the inhibition of intestinal and hepatic metabolism of ambroxol by CYP 3A4. Further studies for the potential drug interaction are necessary since ambroxol is often administrated concomitantly with clarithromycin in humans.

Keywords

References

  1. H. Ecker, M. Lux and B. Lachmann, The role of alveolar macrophages in surfactant turnover. An experimental study with metabolite VIII of bromhexine, Lung., 161, 213-218 (1983) https://doi.org/10.1007/BF02713866
  2. S. Nagaoka and Y. Kase, Pharmacological study of ambroxol (NA872), Japanese Pharmacology and Therapeutics., 9, 127-136 (1981)
  3. E. Houtmeyers, R Gosselink, G Gayan-Ramirez and M. Decramer, Effects of drugs on mucus clearance, Eur Respir J., 14, 452-467 (1999)
  4. D. Nowak, A Antczak, M. Krol, P. Bialasiewicz and T. Pietras, Antioxidant properties of Ambroxol, Free Radic Bioi Med., 16, 517-522 (1994) https://doi.org/10.1016/0891-5849(94)90130-9
  5. B. Yang, D.F. Yao, M. Ohuchi, M. Ide, M. Yano, Y. Okumura and H. Kido, Ambroxol suppresses influenza-virus proliferation in the mouse airway by increasing antiviral factor levels, Eur. Respir J., 19, 952-958 (2002) https://doi.org/10.1183/09031936.02.00253302
  6. J. Gil and U. Thurnheer, Morphometric evaluation of ultrastructural changes in type II alveolar cells ofrat lung produced by bromhexine, Respiration., 28, 438-456 (1971) https://doi.org/10.1159/000192830
  7. P. Cerutti and Y. Kapanci, Effects of metabolite VIII of bromexine (Na 872) on type II epithelium of the lung: an experimental and morphological study with reference to surfactant secretion, Respiration., 37, 241-251 (1979) https://doi.org/10.1159/000194035
  8. P. Von Wichert, U. Bavendamm, M. von Teichmann, G. Muller, E. Thalheim, A Wilke and U. Wiegers, Increased incorporation of fatty acids into phospholipids of lungs and livers of rabbits under the influence of bromhexine and ambroxol, Naunyn Schmiedebergs Arch Pharmacol., 297, 269273 (1977) https://doi.org/10.1007/BF00509271
  9. H.R. Wirtz, Effect of ambroxol on surfactant secretion and synthesis in isolated type II alveolar cells, Pneumologie., 54, 278-283 (2000) https://doi.org/10.1055/s-2000-4452
  10. J.B. Laoag-Femandez, A.M. Fernandez and T. Maruo, Antenatal use of ambroxol for the prevention of infant respiratory distress syndrome, J. Obstet Gynaecol Res., 26, 307-312 (2000) https://doi.org/10.1111/j.1447-0756.2000.tb01327.x
  11. R.R. Wauer, G. Schmalisch, H. Hammer, S. Buttenberg, H. Weigel and M. Huth, Ambroxol for prevention and treatment of hyaline membrane disease, Eur. Respir J. Suppl., 3, 57S-65S (1989)
  12. T. Seki, R Matsumura and H. Kohei, A clinico-pharmacological study on trans-(2amino-3,5-dibromobenzylamino) cyclohexanolhydrochloride, Japanese Journal of Clinical Pharmaccology and Therapeutics., 8, 25-31 (1977) https://doi.org/10.3999/jscpt.8.25
  13. N. Ishiguro, C. Senda, W, Kishimoto, K. Sakai, Y. Funae and T. Igarashi, Identification of CYP3A4 as the predominant isoform responsible for the metabolism of ambroxol in human liver microsomes, Xenobiotica., 30, 71-80 (2000) https://doi.org/10.1080/004982500237839
  14. A.D. Rodrigues, E.M. Roberts, D.J. Mulford, Y. Yao and D. Ouellet, Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily, Drug Metab Dispos., 25, 623-630 (1997)
  15. S. Zhou, S. Yung Chan, B. Cher Goh, E. Chan, W. Duan, M. Huang and H.L. McLeod, Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs, Clin Pharmacokinet., 44, 279-304 (2005) https://doi.org/10.2165/00003088-200544030-00005
  16. A Galetin, H. Burt, L. Gibbons and J.B. Houston, Prediction of time-dependent CYP3A4 drug-drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition, Drug Metab Dispos., 34, 166-175 (2006) https://doi.org/10.1124/dmd.105.006874
  17. J.C. Gorski, D.R. Jones, B.D. Haelmer-Daniels, M.A. Hamman, E.M.Jr. O'Mara and S.D. Hall, The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin, Clin Pharmacol Ther., 64, 133-143 (1998) https://doi.org/10.1016/S0009-9236(98)90146-1
  18. M.H. Botterblom, T.J. Janssen, P. Guelen and T.B. Vree, Rapid and sensitive determination of ambroxol in human plasma and urine by high-performance liquid chromatography, J Chromatogr., 421, 211-215 (1987) https://doi.org/10.1016/0378-4347(87)80400-0
  19. M.L. Rocci and W.J. Jusko, LAGRAN program for area and moments in phannacokinetic analysis, Comp. Prog. In. Biomed., 16, 203-209 (1983) https://doi.org/10.1016/0010-468X(83)90082-X
  20. L.Z. Benet, C.L. Cummins and C.Y. Wu, Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data, Curro Drug Metab., 4, 393-398 (2003) https://doi.org/10.2174/1389200033489389
  21. C.L. Cummins, W, Jacobsen and L.Z. Benet, Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP 3A4, J. Pharmacol Exp. Ther., 300, 1036-1045 (2002) https://doi.org/10.1124/jpet.300.3.1036
  22. K.A. Rodvold, Clinical pharmacokinetics of clarithromycin, Clin Pharmacokinet., 37, 385-398 (1999) https://doi.org/10.2165/00003088-199937050-00003
  23. R.A. Yeates, H. Laufen, T. Zimmermann and T. Schumacher, Phannacokinetic and pharmacodynamic interaction study between midazolam and the macrolide antibiotics, erythromycin, clarithromycin, and the azalide azithromycin, Int. J. Clin Pharmacol. Ther., 35, 577-579 (1997)
  24. N. Akiko, N. Masahiro, Y. Hayato, N. Noriko, N. Takuo, M. Hiroyoko, M. Takashi and N. Masahiro, Effect of Clarithromycin on the pharmacokinetics of cabergoline in healthy controls and in patients, J. Pharmacol. Sci., 100, 59-64 (2006) https://doi.org/10.1254/jphs.FP0050711

Cited by

  1. Enhancement of lung levels of antibiotics by ambroxol and bromhexine vol.15, pp.3, 2019, https://doi.org/10.1080/17425255.2019.1578748