Candidate Tumor-Suppressor Gene Regions Responsible for Radiation Lymphomagenesis in F1 Mice with Different p53 Status

  • Hong, Doo-Pyo (College of Biomedical & Health Science, Department of Life Science, Konkuk university) ;
  • Choi, Dong-Kug (College of Biomedical & Health Science, Department of Life Science, Konkuk university) ;
  • Choi, Wahn-Soo (Department of Immunology, College of Medicine and Institute of Biomedical Science and Technology, Konkuk University) ;
  • Cho, Bong-Gum (College of Biomedical & Health Science, Department of Life Science, Konkuk university) ;
  • Park, Tae-Kyu (College of Biomedical & Health Science, Department of Life Science, Konkuk university) ;
  • Lim, Beong-Ou (College of Biomedical & Health Science, Department of Life Science, Konkuk university)
  • Published : 2006.04.01

Abstract

Regions of allelic loss on chromosomes in many tumors of human and some experimental animals are generally considered to harbor tumor-suppressor genes involved in tumorigenesis. Allelotype analyses have greatly improved our under-standing of the molecular mechanism of radiation lymphomagenesis. Previously, we and others found frequent loss of heterozygosity (LOH) on chromosomes 4, 11, 12, 16 and 19 in radiation-induced lymphomas from several $F_1$, hybrid mice. To examine possible contributions of individual tumor-suppressor genes to tumorigenesis in p53 heterozygous deficiency, we investigated the genome-wide distribution and status of LOH in radiation-induced lymphomas from $F_1$ mice with different p53 status. In this study, we found frequent LOH (more than 20%) on chromosomes 4 and 12 and on chromosomes 11, 12, 16 and 19 in radiation-induced lymphomas from $(STS/A{\times}MSM/Ms)F_1$ mice and $(STS/A{\times}MSM/Ms)F_1-p53^{KO/+}$ mice, respectively. Low incidences of LOH (10-20%) were also observed on chromosomes 11 in mice with wild-type p53, and chromosomes 1, 2, 9, 17 and X in p53 heterozygous-deficient mice. The frequency of LOH on chromosomes 9 and 11 increased in the $(STS/A{\times}MSM/Ms)F_1-p53^{KO/+}$ mice. Preferential losses of the STS-derived allele on chromosome 9 and wild-type p53 allele on chromosome 11 were also found in the p53 heterozygous-deficient mice. Thus, the putative tumor-suppressor gene regions responsible for lymphomagenesis might considerably differ due to the p53 status.

Keywords

References

  1. Armitage P, Doll R (1954) The age distribution of cancer and a multistage theory of carcinogenesis. Brit. J. Cancer 8: 1-12 https://doi.org/10.1038/bjc.1954.1
  2. Bandera CA, Takahashi H, Behbakht K, Liu PC, LiVolsi VA, Benjamin A, Morgan MA, King SA, Rubin SC, Boyd J (1997) Deletion mapping of two potential chromosome 14 tumor suppressor gene loci in ovarian carcinoma. Cancer Res. 57:513-515
  3. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, Debelenko LV, Zhuang Z, Lubensky IA, Liotta LA, Grabtree JS, Wang Y, Roe BA., Wisemann J, Boguski MS, Agarwal SK, Kester MB, Kim YS, Heppner C, Dong Q, Spiegel AM, Burns AL, MarX SJ (1997) Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276:404-407 https://doi.org/10.1126/science.276.5311.404
  4. Chang WYH, Cairns P, Schoenberg MP, Polascik TJ, Sidransky D (1995) Novel suppressor loci on chromosome 14q in primary bladder cancer. Cancer Res. 55:3246-3249
  5. Cliby W, Ritland S, Hartmann L, Dodson M, Haling KC, Keeney G, Podratz KC, Jenkins RB (1993) Human epithelial ovarian cancer allelotype. Cancer Res. 53:2393-2398
  6. Chung IM, Kim KH, Ahn JK (1999) Screening of korean medicinal and food plants with antitumoral activity. Korean J. Medicinal Crop Sci. 7:37-44
  7. Derr EM, Rollbrocker B, Hayashi Y, Peters N, Meyer-Puttlitz B, Louis DN, Schramm J, Wiestler OD, Parsons R, Eng C, von Deimling A (1998) PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16:2259-2264 https://doi.org/10.1038/sj.onc.1201756
  8. Fujino T, Risinger JI, Collins NK, Lie FS, Nishii H, Takahashi H, Wetphal EM, Barrett JC, Sasaki H, Kohler M, Berchuck A, Boyd J (1994) Alleiotype of endometorial carcinoma. Cancer Res. 54:4294-4298
  9. Kim MJ, Kim JS, Kang WH, Jeong DM (2002) Effect on antimutagenic and cancer cell growth inhibition of Ixeris dentata Nakai. Korean J. Medicinal Crop Sci. 10: 139-143
  10. Kominami R (2000) Tumor suppressor and susceptibility genes in gamma-ray-induced mouse thymic lymphomas. In: Abstracts of the 43rd annual meeting of the Japan Radiation Research Society. J. Radiat. Res. 41:384
  11. Kovacs, G (1993) Molecular differential pathology of renal cell tumors. Histpathol. (Oxf.) 22:1-8 https://doi.org/10.1111/j.1365-2559.1993.tb00061.x
  12. Levine AJ (1993) The tumor suppressor genes. Ann. Rev. Biochern. 62:623-651 https://doi.org/10.1146/annurev.bi.62.070193.003203
  13. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, MiIiaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943-1947 https://doi.org/10.1126/science.275.5308.1943
  14. Matsumoto Y, Kosugi S, Shinbo T, Chou D, Ohashi M, Wakabayashi Y, Sakai K, Okumoto M, Mori N, Aizawa S, Niwa, O, Kominami R (1998) Allelic loss analysis of gamma-ray-induced mouse thymic lymphomas: two candidate tumor suppressor gene loci on chromosomes 12 and 16. Oncogene 16:2747-2754 https://doi.org/10.1038/sj.onc.1201810
  15. Moon HI, Zee OP (1999) Anticancer compounds of Plantago asiatica L. Korean J. Medicinal Crop Sci. 7:143-146
  16. Mori N, Okumoto M, Yamate J (2000) A susceptibility locus for radiation lymphomagenesis on mouse chromosome 16. J. Radiat. Res. 41:367-372 https://doi.org/10.1269/jrr.41.367
  17. Okano H, Saito Y, Miyazawa T, Shinbo T, Chou, D, Kosugi S, Takahashi Y, Odani S, Niwa O, Kominami R (1999) Homozygous deletions and point mutations of the Ikaros gene in '-ray-induced mouse thymic lymphomas. Oncogene 18:6677-6683 https://doi.org/10.1038/sj.onc.1203100
  18. Okumoto M, Nishikawa R, Imai S, Hilgers J (1989) Resistance of STS/A mice to lymphoma induction by X-irradiation. J. Radiat. Res. 30:135-139 https://doi.org/10.1269/jrr.30.135
  19. Okumoto M, Nishikawa R, Imai S, Hilgers J (1990) Genetic analysis of resistance to radiation lymphomagenesis with recombinant inbred strains of mice. Cancer Res. 50:3848-3850
  20. Okumoto M, Song CW, Tabata K, Ishibashi M, Mori N, Park YG; Kominami R, Matsumoto Y, Takamori Y, Esaki K (1998) Putative tumor suppressor gene region within 0.85 cM on chromosome 12 in radiation-Induced murine lymphomas. Mol. Carcinog. 22:175-181 https://doi.org/10.1002/(SICI)1098-2744(199807)22:3<175::AID-MC5>3.0.CO;2-K
  21. Okumoto M, Park YG, Song CW, Mori, N (1999) Frequent loss of heterozygosity on chromosomes 4, 12 and 19 in radiation-induced lymphomas in mice. Cancer Lett. 135 :223-228 https://doi.org/10.1016/S0304-3835(98)00305-X
  22. Parangi S, Dietrich W, Christo fori G, Lander ES, Hanahan D (1995) Tumor suppressor loci on mouse chromosomes 9 and 16 are lost at distinct stages of tumorigenesis in a transgenic model of islet cell carcinoma. Cancer Res. 55:6071-6076
  23. Park YG, Song CW, Mori N, Sugimoto K, Hong DP, Okumoto, M (2000) Analysis of highly frequent allelic loss region on distal chromosome 12 in murine radiation-induced lymphomas. Cancer Lett. 148:95-103 https://doi.org/10.1016/S0304-3835(99)00321-3
  24. Santos J, Castro IP, Herranz M, Pellicer A, Fernandez-Piqueras J (1996) Allelic losses on chromosome 4 suggest the existence of a candidate tumor suppressor gene region of about 0.6 cM. Oncogene 12:669-676
  25. Schreiber-Agus N, Meng Y, Hoang T, Hou Jr H, Chen K, Greenberg R, Cordon-Cardo C, Lee HW, DePinho RA (1998) Role of Mxil in ageing organ systems and the regulation of normal and neoplastic growth. Nature 393:483-487 https://doi.org/10.1038/31008
  26. Shimada Y, Nishimura M, Kakinuma S, Okumoto M, Shiroishi T, Clifton KH, Wakana S (2000) Radiation-associated loss of heterozygosity at the Znfnlal (Ikaros) locus on chromosome 11 in murine thymic lymphomas. Radiat. Res. 154:293-300 https://doi.org/10.1667/0033-7587(2000)154[0293:RALOHA]2.0.CO;2
  27. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian, SV (1997) Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genetics 15:356-362 https://doi.org/10.1038/ng0497-356
  28. Suzuki T, Yokota J, Mugishima H, Okabe I, Ookuni M, Sugimura T, Terada M (1989) Frequent loss of heterozygosity on chromosome 14q in neuroblastoma. Cancer Res. 49: 1095-1098
  29. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280:1614-1617 https://doi.org/10.1126/science.280.5369.1614
  30. Tauchi H (2000) Positional cloning and functional analysis of the gene responsible for Nijmegen breakage syndrome, NBS1. J. Radiat. Res. 41:367-372 https://doi.org/10.1269/jrr.41.367
  31. Weinberg RA. (1991) Tumor suppressor genes. Science 254: 138-1146
  32. Young J, Leggett B, Ward M, Thomas L, Buttenshaw R, Searle J, Chenevix- Trench, G (1993) Frequent loss of heterozygosity on chromosome 14 occurs in advanced colorectal carcinomas. Oncogene 8:671-675