DOI QR코드

DOI QR Code

Effect of Mixture of p-Phenylenediamine with Hydrogen Peroxide to Rat Skin

p-Phenylenediamine과 과산화수소 혼합액 도포가 흰쥐 피부조직에 미치는 영향

  • Lee, Sang-Hee (Dept. of Beauty Design, Kyongdo Provincial College) ;
  • Lee, Sang-Il (Dept. of Food Nutrition & Cookery, Keimyung College)
  • 이상희 (경북도립 경도대학 뷰티디자인과) ;
  • 이상일 (계명문화대학 식품영양조리과)
  • Published : 2006.08.30

Abstract

p-Pheylenediamimine (PPD) is one of hair dye's ingredients, and the mixture of PPD with hydrogen peroxide is generally used to dye hair at beauty shop. This study is conducted to investigate the effect of oxidized PPD on rat skin. 6% hydrogen peroxide, PPD (5% PPD in 2% $NH_4OH$) or the mixture (isovolumed mixture of 5% PPD and 6% hydrogen peroxide in 2% $NH_4OH$) was applied to rat skin ($25\;mg/16.5\;cm^2$) five times every other day. The activity of acid phosphatase (ACP) was more increased in the mixture of PPD with hydrogen peroxide applied group than PPD applied group. Furthermore, the activity of glucose 6-phosphatase (G6Pase) in the mixture of PPD with hydrogen peroxide applied group showed higher decreasing rate than that of PPD applied group. In histopathological findings, the mixed PPD with hydrogen peroxide applied group showed more thickening of epithelium, increased numbers of dermal fibroblasts, and the dilatation of dermal capillaries than PPD applied group. The significant increasing of xanthine oxidase (XO) activity was determined in mixture of PPD with hydrogen peroxide applied group compared with PPD applied group. However, reactive oxygen species (ROS) scavenging system, the activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) were more significantly decreased in mixed PPD with hydrogen peroxide applied groups than in PPD applied group. In conclusion, topical application with the mixture of PPD with hydrogen peroxide compared with PPD application resulted in imbalance with ROS generating and scavenging which probably led to severe skin injury.

혼합 두발염색제의 독성을 확인할 목적으로 체중 $230{\pm}20\;g$의 Sprague-Dawley종의 흰쥐를 대조군, 6% 과산화수소 도포 실험군, 2% 암모니아 용액에 5% PPD를 용해시켜 도포한 실험군, 2% 암모니아 용액에 5% PPD와 6% 과산화수소의 동량 혼합액을 도포한 실험군 등 4군으로 분류하여 2일 간격으로 피부 표면적 $16.5\;cm^2$ 당 25 mg이 되게 5회 도포한 다음 피부조직의 손상 정도 및 ROS 생성계와 해독계의 활성변동을 관찰하여 다음과 같은 결과를 얻었다. PPD와 과산화수소 혼합액을 도포한 실험군에서 PPD를 단독 도포한 실험군에 비해 피부조직의 손상 지표인 ACP 활성이 현저하게 증가하였으며, PPD 단독 도포군의 조직병리에서는 관찰되지 않았던 진피층 내 모세혈관의 확장 등이 나타나는 것으로 보아 피부조직의 손상이 심화된 것을 확인할 수가 있었다. 이러한 실험 조건 하에서 ROS 생성계효소인 XO의 활성은 PPD와 과산화수소 혼합액 도포군에서 PPD 단독 도포군에 비해 현저하게 증가하였으며, ROS 해독계 효소들의 활성은 유의하게 감소하였다. 이상의 실험결과를 종합해 볼 때, PPD와 과산화수소 혼합액 도포군이 PPD 단독 도포군에 비해 XO의 활성이 현저하게 증가되어 과잉의 ROS를 생성시켜 ROS 해독계 효소의 활성을 억제함으로서 조직의 손상이 심화된 것으로 생각된다.

Keywords

References

  1. Corbett JF. 1973. Role of m-difunctional benzene derivatives in oxidative hair dyeing, I. Reaction with p- diamines. J Soc Cosmet Chem 24: 103-134
  2. Hawley GG. 1971. The condensed chemical dictionary. 8th ed. Van Nostrand Reinhold, New York
  3. Rojanapo W, Kupradinun P, Tepsuwan A, Chutimataewin S, Tanyakaset M. 1986. Carcinogenicity of an oxidation product of p-phenylenediamine. Carcinogenesis 7: 1997- 2002 https://doi.org/10.1093/carcin/7.12.1997
  4. Watanabe T, Hirayama T, Fukui S. 1990. Mutagenicity of commercial hair dyes and detection of 2,7-diaminophenazine. Mutat Res 244: 303-308 https://doi.org/10.1016/0165-7992(90)90077-W
  5. Fisher AA. 1980. Is hair dyed with papa-phenylenediamine allergenic? Contact Dermatitis 6: 266-301
  6. Goldberg BG, Herman FF, Hirata I. 1987. Systemic anaphylaxis due to an oxidation product of p-phenylenediamine in a hair dye. Ann Allergy 58: 205-208
  7. Kurban RS, Mihm MC. 1992. Cutaneous reaction patterns and the use of specialized laboratory techniques. In Dermatolo. WB Saunders, New York
  8. Ryu JI, Yoon CG, Shin JK. 1999. Effect of circadian rhythms on the toluene metabolism in rats. Kor J Biomed Lab Sci 5: 67-74
  9. Wakasugi JW, Katami K, Ikeda T, Tomikawa M. 1985, Action of malotilate on reduced serum cholesterol level in rats with carbon tetrachloride induced liver damage. J Pharmacol 38: 391-401
  10. Ezio T, Bruno L, Claudio S, Giovanni C. 1980. Xanthine oxidase in polymorphonuclear leukocytes and macrophages inmice in three pathological situations. Biochem Pharmacol 1: 1945-1948
  11. Frank L. 1991. Developmental aspects of experimental pulmonary oxygen toxicity. Free Radic Biol Med 11: 463-494 https://doi.org/10.1016/0891-5849(91)90062-8
  12. Manea A, Constantinescu E, Popov D, Raicu M. 2004. Changes in oxidative balance in rat pericytes exposed to diabetic conditions. J Cell Mol Med 81: 117-126
  13. Bonnefont-Rousselot D, Bastard JP, Jaudon MC, Delattre J. 2000. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab 26: 163-176
  14. Yildirim M, Baysal V, Inaloz HS, Kesici D, Delibas N. 2003. The role of oxidants and antioxidants in generalized vitiligo. J Dermatol 30: 104-108 https://doi.org/10.1111/j.1346-8138.2003.tb00356.x
  15. Parks DA, Granger D. 1986. Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl 548: 87-99
  16. Manson PN, Anthenelli RM, Im MJ, Bulkely GB, Hoopes JE. 1983. The role of oxygen free radicals in ischemic tissue injury in island skin flaps. Ann Surgery 198: 87-90 https://doi.org/10.1097/00000658-198307000-00017
  17. Im MJ, Manson PN, Bulkey GB, Hoopes JE. 1985. Effects of superoxide dismutase and allopurinol in survival of acute island skin flaps. Ann Surgery 201: 357-359 https://doi.org/10.1097/00000658-198503000-00018
  18. Sax NI. 1984. Dangerous properties of industrial materials. 6th ed. Van Nostrand Reinhold, New York
  19. Okayama Y. 2005. Oxidative stress in allergic and inflammatory skin diseases. Curr Drug Targets Inflam Allergy 4: 517-519 https://doi.org/10.2174/1568010054526386
  20. Bessey OA, Lowry OH, Brock J. 1946. A method for the rapid determination of alkaline phosphatase with 5 cubic millimeters of serum. J Biol Chem 164: 321-329
  21. Hasumura Y, Tescke R, Lieber CS. 1974. Increased carbon tetrachloride hepatotoxicity, and its metabolism after chronic ethanol consumption. Gastroenterology 66: 415- 422
  22. Fiske CH, Subbarowand Y. 1925. The colorimetric determination of phosphorous. J Biol Chem 66: 375-400
  23. Yoon JG. 1984. A modified colorimetric assay for xanthine oxidase in rat liver extracts. Keimyung College Res 2: 295-308
  24. Martin JP, Dailey JM, Sugarmanand E. 1987. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch Biochem Biophys 255: 329-336 https://doi.org/10.1016/0003-9861(87)90400-0
  25. Aebi H. 1974. Catalase. In Methods of Enzymatic Analysis. Academic Press, New York. Vol 2, p 673-684
  26. Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione S-transferase: The first enzymatic step in mercapturic acid and formation. J Biol Chem 249: 7130-7139
  27. Choi HJ, Lee SH, Yoon CG. 2003. Effct of p-phenylenediamine application to rat skin on the liver oxygen free radical systems. J Biomed Lab Sci 9: 75-84
  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275
  29. Schefler WC. 1980. Statistics for the Biological Sciences. Addison-Wesley, London
  30. Lee SH, Cho HG, Lee SI. 2005. Effect of p-phenylenediamine to rat skin. J Biomed Lab Sci 34: 1330-1335 https://doi.org/10.3746/jkfn.2005.34.9.1330
  31. Miyagawa T, Doi F. 1979. Multiple forms and glycoprotein nature of acid phosphatase, alpha-frucosidase and alpha-mannosidase of psoriatic scates. Invest Dermatol 73:554-557 https://doi.org/10.1111/1523-1747.ep12541593
  32. Tatrai E, Ungvary G, Adamis Z, Timar M. 1985. Short term in vivo method for prediction of the fibrogenic effect of different mineral dusts. Exp Pathol 28: 111-118 https://doi.org/10.1016/S0232-1513(85)80022-0
  33. Whittle BJ, Steel G. 1985. Evaluation of the protection of rat gastric mucosa by a prostaglandin analogue using cellular enzyme marker and histologic techniques. Gastroenterology 88: 315-327 https://doi.org/10.1016/S0016-5085(85)80186-4
  34. Hasushi Y, Teschke R, Lieber CS. 1974. Increased carbon tetrachloride hepatotoxicity, and its mechanism, after chronic ethanol consumption. Gastroenterology 66: 415- 422
  35. Karnik AB, Thakore KN, Nigam SK, Babu KA, Lakkad BC, Bhatt DK, Kashyap SK, Chatterjee SK. 1981. Studies on glucose-6-phosphatase, fructose-1,6-diphosphatase activity, glycogen distribution and endoplasmic reticulum changes during hexachlorocyclohexane induced hepatocarcinogenesis in pure inbred Swiss mice. Neoplasma 28: 575-584
  36. Shin TS, Deung YK, Kim SS. 1976. Glucose-6-phosphatase activity and ultrastructures in hepatocytes of thioacetamide-treated mice. Yonsei Medical J 17: 85-96 https://doi.org/10.3349/ymj.1976.17.2.85
  37. Sampson JB, Beckman JS. 2001. Hydrogen peroxide damages the zinc-binding site of zinc-deficient Cu, Zn superoxide dismutase. Arch Biochem Biophysiol 392: 8-13 https://doi.org/10.1006/abbi.2001.2418
  38. Zelko IN, Mariani TJ, Folz RJ. 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33: 337- 349 https://doi.org/10.1016/S0891-5849(02)00905-X
  39. Gaetani GF, Kirkman HN, Mangerini R, Ferraris AM. 1994. Importance of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 84: 325-330
  40. Jakoby WB. 1978. The glutathione S-transferases: A group of multifunctional detoxication proteins. Adv Enzymol 46: 383-414
  41. Hayes JD, Pulford DJ. 1995. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30: 445-600 https://doi.org/10.3109/10409239509083491
  42. Tsuchida S, Sato K. 1992. Glutathione transferases and cancer. Crit Rev Biochem Mol Biol 27: 337-384 https://doi.org/10.3109/10409239209082566
  43. Talalay P, Fahey JW, Holtzclaw WD, Prestera T, Zhang Y. 1995. Chemoprotection against cancer by phase 2 enzyme induction. Toxicol Lett 82-83: 173-179 https://doi.org/10.1016/0378-4274(95)03553-2